Хара́ктер — мультипликативная комплекснозначная функция на группе. Иначе говоря, если — группа, то характер — это гомоморфизм из в мультипликативную группу поля (обычно поля комплексных чисел).
Иногда рассматриваются только унитарные характеры — гомоморфизмы в мультипликативную группу поля, образ которых лежит на единичной окружности, или, в случае комплексных чисел, гомоморфизмы в . Все прочие гомоморфизмы в называются в таком случае квазихарактерами.
Важным частным случаем характеров являются отображения в группу комплексных чисел, равных по модулю единице. Такие характеры имеют вид , где , и широко изучаются[1][2][3][4] в теории чисел в связи с распределением простых чисел в бесконечных арифметических прогрессиях. В этом случае изучаемой группой является кольцо вычетов с операцией сложения, а функция линейна. При этом множество различных значений линейного коэффициента в функции определяет группу характеров, изоморфную группе .
Рассмотрим
Для определим
Множество с операцией поточечного умножения образует группу характеров в . Нейтральным элементов этой группы является , поскольку .
Классическим примером использования характеров по модулю является теорема Дирихле о простых числах в арифметической прогрессии.
Для бесконечных циклических групп, изоморфных , будет существовать бесконечное множество характеров вида , где .
Для произвольной конечнопорождённой абелевой группы также можно[5] явно и конструктивно описать множество характеров в . Для этого используется теорема о разложении такой группы в прямое произведение циклических групп.
Поскольку любая циклическая группа порядка изоморфна группе и её характеры в всегда отображаются во множество , то для группы, представленной прямым произведением , циклических групп , можно параметризовать характер как произведение характеров циклических этих циклических групп:
Это позволяет провести явный изоморфизм между самой группой и группой её характеров, равной ей по количеству элементов.
Для обозначим через характер, соответствующий элементу по описанной выше схеме.
Справедливы[6] следующие тождества:
Если — ассоциативная алгебра над полем , характер — это ненулевой гомоморфизм алгебры в . Если при этом — звёздная алгебра,[уточнить] то характер является звёздным гомоморфизмом в комплексные числа.
![]() |
Это заготовка статьи по алгебре. Вы можете помочь проекту, дополнив её. |
В этой статье не хватает ссылок на источники информации. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .