WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Статистическая сумма (или статсумма) (обозначается , от нем. Zustandssumme — сумма по состояниям) — важная величина в статистической физике, содержащая информацию о статистических свойствах системы в состоянии термодинамического равновесия. Она является функцией температуры и других параметров, таких как объём. Многие термодинамические величины системы, такие как энергия, свободная энергия, энтропия и давление, могут быть выражены через статистическую сумму и её производные.

Существует несколько типов статистической суммы, каждый из которых соответствует различным статистическим ансамблям. Каноническая статистическая сумма относится к каноническому статистическому ансамблю, в котором система может обмениваться с окружающей средой теплотой при фиксированных температуре, объёме и числе частиц. Большая каноническая статистическая сумма относится к большому каноническому статистическому ансамблю, в котором система может обмениваться с окружающей средой как теплотой, так и частицами при фиксированных температуре, объёме и химическом потенциале. В других ситуациях можно определить другие типы статистических сумм.

Статистическая сумма в каноническом ансамбле

Определение

Предположим, что имеется подчиняющаяся законам термодинамики система, находящаяся в постоянном тепловом контакте со средой, которая имеет температуру , а объём системы и количество составляющих её частиц фиксированы. В такой ситуации система относится к каноническому ансамблю. Обозначим точные состояния, в которых может находиться система, через , а полную энергию системы в состоянии  — . Как правило, эти микросостояния можно рассматривать как дискретные квантовые состояния системы.

Каноническая статистическая сумма — это

где обратная температура определена как

а  — это постоянная Больцмана. В классической статистической механике было бы некорректно определять статистическую сумму в виде суммы дискретных членов, как в приведённой выше формуле. В классической механике координаты и импульсы частиц могут меняться непрерывно, и множество микросостояний несчётно. В таком случае необходимо провести разбиение фазового пространства на ячейки, то есть два микросостояния считаются одинаковыми, если их различия в координатах и импульсах «не слишком велики». При этом статистическая сумма принимает вид интеграла. Например, статистическая сумма газа из классических частиц равна

где  — некоторая величина размерности действия (которая должна быть равна постоянной Планка для соответствия квантовой механике), а  — классический гамильтониан. Причины появления множителя объяснены ниже. Для простоты в этой статье будет использоваться дискретный вид статистической суммы, но полученные результаты в равной мере относятся и к непрерывному виду.

В квантовой механике статистическая сумма может быть записана более формально как след по пространству состояний (который не зависит от выбора базиса):

где  — оператор Гамильтона. Экспонента от оператора определяется с помощью разложения в степенной ряд.

Смысл и значимость

Сначала рассмотрим, от чего она зависит. Статистическая сумма является функцией, в первую очередь, температуры , а во вторую — энергий микросостояний и т. д. Энергии микросостояний определяются другими термодинамическими величинами, такими как число частиц и объём, а также микроскопическими свойствами, такими как масса частиц. Эта зависимость от микроскопических свойств является основной в статистической механике. По модели микроскопических составляющих системы можно рассчитать энергии микросостояний, а следовательно, и статистическую сумму, которая позволяет рассчитать все остальные термодинамические свойства системы.

Статистическая сумма может быть использована для расчёта термодинамических величин, поскольку она имеет очень важный статистический смысл. Вероятность , с которой система находится в микросостоянии , равна

Статистическая сумма входит в распределение Гиббса в виде нормировочного множителя (она не зависит от ), обеспечивая равенство единице суммы вероятностей:

Вычисление термодинамической полной энергии

Чтобы продемонстрировать полезность статистической суммы, рассчитаем термодинамическое значение полной энергии. Это просто математическое ожидание, или среднее по ансамблю значение энергии, равное сумме энергий микросостояний, взятых с весами, равными их вероятностям:

или, что то же самое

Можно также заметить, что если энергии микросостояний зависят от параметра как

для всех , то среднее значение равно

На этом основан приём, позволяющий вычислить средние значения многих микроскопических величин. Нужно искусственно добавить эту величину к энергии микросостояний (или, на языке квантовой механики, к гамильтониану), вычислить новую статистическую сумму и среднее значение, а затем в итоговом выражении положить равным нулю. Аналогичный метод применяется в квантовой теории поля.

Связь с термодинамическими величинами

В этом разделе приведена связь статистической суммы с различными термодинамическими параметрами системы. Эти результаты могут быть получены с помощью метода, описанного в предыдущем разделе, и различных термодинамических соотношений.

Как мы уже видели, энергия равна

Флуктуация энергии равна

Теплоёмкость равна

Энтропия равна

где  — свободная энергия, определяемая как , где  — полная энергия, а  — энтропия, так что

Статистическая сумма подсистем

Предположим, что система состоит из подсистем, взаимодействие между которыми пренебрежимо мало. Если статистические суммы подсистем равны , то статистическая сумма всей системы равна произведению отдельных статистических сумм:

Если подсистемы обладают одинаковыми физическими свойствами, то их статистические суммы одинаковы: , и в этом случае

Из этого правила, однако, есть одно известное исключение. Если подсистемы — это тождественные частицы, то есть, исходя из принципов квантовой механики, их невозможно различить даже в принципе, общая статистическая сумма должна быть разделена на :

Это делается, чтобы не учитывать одно и то же микросостояние несколько раз.

Статистическая сумма большого канонического ансамбля

Определение

Аналогично канонической статистической сумме для канонического ансамбля, можно определить большую каноническую статистическую сумму для большого канонического ансамбля — системы, которая может обмениваться со средой и теплотой, и частицами, и имеет постоянную температуру , объём и химический потенциал . Большая каноническая статистическая сумма, хотя и более сложна для понимания, упрощает расчёт квантовых систем. Большая каноническая статистическая сумма для квантового идеального газа записывается как:

где  — общее количество частиц в объёме , индекс пробегает все микросостояния системы,  — число частиц в состоянии , а  — энергия в состоянии .  — всевозможные наборы чисел заполнения каждого микросостояния, такие что . Рассмотрим, например, слагаемое, соответствующее . Один из возможных наборов чисел заполнения будет , он даёт вклад в слагаемое с , равный

Для бозонов числа заполнения могут принимать любые целые неотрицательные значения при том, что их сумма равна . Для фермионов, в соответствии с принципом запрета Паули, числа заполнения могут быть равны только 0 или 1, но их сумма опять же равна .

Частные случаи

Можно показать, что указанное выражение для большой канонической статистической суммы математически эквивалентно следующему:

(Это произведение иногда берётся по всем значениям энергии, а не по отдельным состояниям, и в этом случае каждая отдельная статистическая сумма должна быть возведена в степень , где  — число состояний с такой энергией. также называется степенью вырождения.)

Для системы, состоящей из бозонов:

а для системы, состоящей из фермионов:

В случае максвелловско-больцмановского газа необходимо корректно подсчитывать состояния и делить больцмановский множитель на

Связь с термодинамическими величинами

Так же как и каноническая статистическая сумма, большую каноническую статистическую сумму можно использовать для вычисления термодинамических и статистических величин системы. Как и в каноническом ансамбле, термодинамические величины не фиксированы, а статистически распределены вокруг среднего значения. Обозначая , получаем средние значения чисел заполнения:

Для больцмановских частиц это даёт:

Для бозонов:

Для фермионов:

что совпадает с результатами, получаемыми с помощью канонического ансамбля для статистики Максвелла — Больцмана, статистики Бозе — Эйнштейна и статистики Ферми — Дирака соответственно. (Степень вырождения отсутствует в этих уравнениях, поскольку индекс нумерует отдельные состояния, а не уровни энергии.)

Общее число частиц

Флуктуация общего числа частиц

Внутренняя энергия

Флуктуация внутренней энергии

Давление

Механическое уравнение состояния

Литература

  • Кубо Р. Статистическая механика. — М.: Мир, 1967.
  • Хуанг К. Статистическая механика. — М.: Мир, 1966. (Huang, Kerson, «Statistical Mechanics», John Wiley & Sons, New York, 1967.)
  • Исихара А. Статистическая физика. — М.: Мир, 1973. (Isihara A. «Statistical Physics». — New York: Academic Press, 1971.)
  • Kelly, James J. Lecture notes.
  • Ландау Л. Д., Лифшиц Е. М. Статистическая физика. Часть 1. — Издание 5-е. М.: Физматлит, 2005. — 616 с. — («Теоретическая физика», том V). ISBN 5-9221-0054-8..

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии