WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
График многочлена 7 степени.

Многочле́н (или полино́м от греч. πολυ- «много» + лат. nomen «имя») от переменных — это сумма одночленов или, строго, — конечная формальная сумма вида

, где
  •  — набор из целых неотрицательных чисел, именуемый мультииндексом,
  •  — число, именуемое коэффициент многочлена, зависящее только от мультииндекса I.

В частности, многочлен от одной переменной есть конечная формальная сумма вида

, где

С помощью многочлена выводятся понятия «алгебраическое уравнение» и «алгебраическая функция».

Изучение и применение

График многочленов Бернулли

Изучение полиномиальных уравнений и их решений составляло едва ли не главный объект «классической алгебры».

С изучением многочленов связан целый ряд преобразований в математике: введение в рассмотрение нуля, отрицательных, а затем и комплексных чисел, а также появление теории групп как раздела математики и выделение классов специальных функций в анализе.

Техническая простота вычислений, связанных с многочленами, по сравнению с более сложными классами функций, а также тот факт, что множество многочленов плотно в пространстве непрерывных функций на компактных подмножествах евклидова пространства (см. аппроксимационная теорема Вейерштрасса), способствовали развитию методов разложения в ряды и полиномиальной интерполяции в математическом анализе.

Многочлены также играют ключевую роль в алгебраической геометрии, объектом которой являются множества, определённые как решения систем многочленов.

Особые свойства преобразования коэффициентов при умножении многочленов используются в алгебраической геометрии, алгебре, теории узлов и других разделах математики для кодирования или выражения многочленами свойств различных объектов.

Связанные определения

  • Многочлен вида называется одночленом или мономом мультииндекса .
  • Одночлен, соответствующий мультииндексу называется свободным членом.
  • Полной степенью (ненулевого) одночлена называется целое число .
  • Множество мультииндексов I, для которых коэффициенты ненулевые, называется носителем многочлена, а его выпуклая оболочка — многогранником Ньютона.
  • Степенью многочлена называется максимальная из степеней его одночленов. Степень тождественного нуля доопределяется значением .
  • Многочлен, являющийся суммой двух мономов, называется двучленом или биномом,
  • Многочлен, являющийся суммой трёх мономов, называется трёхчленом.
  • Коэффициенты многочлена обычно берутся из определённого коммутативного кольца (чаще всего поля, например, поля вещественных или комплексных чисел). В этом случае, относительно операций сложения и умножения многочлены образуют кольцо (более того ассоциативно-коммутативную алгебру над кольцом без делителей нуля) которое обозначается
  • Для многочлена одной переменной, решение уравнения называется его корнем.

Полиномиальные функции

Пусть есть алгебра над кольцом . Произвольный многочлен определяет полиномиальную функцию

.

Чаще всего рассматривают случай .

В случае, если есть поле вещественных или комплексных чисел (а также любое другое поле с бесконечным числом элементов), функция полностью определяет многочлен p. Однако в общем случае это неверно, например: многочлены и из определяют тождественно равные функции .

Полиномиальная функция одного действительного переменного называется целой рациональной функцией.

Виды многочленов

  • Многочлен одной переменной называется унитарным, нормированным или приведённым[en]*, если его старший коэффициент равен единице.
  • Многочлен, все одночлены которого имеют одну и ту же полную степень, называется однородным.
    • Например  — однородный многочлен двух переменных, а не является однородным.
  • Многочлен, который можно представить в виде произведения многочленов низших степеней с коэффициентами из данного поля, называется приводимым (над данным полем), в противном случае — неприводимым.

Свойства

Делимость

Роль неприводимых многочленов в кольце многочленов сходна с ролью простых чисел в кольце целых чисел. Например, верна теорема: если произведение многочленов делится на неприводимый многочлен , то p или q делится на . Каждый многочлен, степени большей нуля, разлагается в данном поле в произведение неприводимых множителей единственным образом (с точностью до множителей нулевой степени).

Например, многочлен , неприводимый в поле рациональных чисел, разлагается на три множителя в поле вещественных чисел и на четыре множителя в поле комплексных чисел.

Вообще, каждый многочлен от одного переменного разлагается в поле вещественных чисел на множители первой и второй степени, в поле комплексных чисел — на множители первой степени (основная теорема алгебры).

Для двух и большего числа переменных этого уже нельзя утверждать. Над любым полем для любого существуют многочлены от переменных, неприводимые в любом расширении этого поля. Такие многочлены называются абсолютно неприводимыми.

Вариации и обобщения

См. также

Литература

  • Винберг Э. Б. Алгебра многочленов. М.: Просвещение, 1980. — 176 с.
  • Курош А. Г. Курс высшей алгебры, 9 изд. М., 1968.
  • Мишина А. П., Проскуряков И. В. Высшая алгебра, 2 изд. М., 1965.
  • Солодовников А. С, Родина М. А. Задачник-практикум по алгебре. М.: Просвещение, 1985. — 127 с.
  • Прасолов В. В. Многочлены. М.: МЦНМО, 2003. — 336 с. ISBN 5-94057-077-1.
  • Фаддеев Д. К., Соминский И. С. Сборник задач по высшей алгебре. М., 1977.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии