WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Стереографическая проекция трёх координатных направлений 3-сферы на трёхмерное пространство: параллелей, меридианов и гипермеридианов.
В исходном пространстве эти линии являются окружностями и образуют прямоугольную сетку на 3-сфере. Стереографическая проекция — конформное отображение, поэтому их образы также являются окружностями или прямыми и ортогональны друг другу.
Проекция трёхмерной проекции аппроксимации гиперсферы четырёхмерного пространства

Гиперсфера (от др.-греч. ὑπερ- «сверх-» + σφαῖρα «шар») — гиперповерхность в -мерном евклидовом пространстве, образованная точками, равноудалёнными от заданной точки, называемой центром сферы.

  • при гиперсфера вырождается в две точки, равноудалённые от центра;
  • при она представляет собой окружность;
  • при гиперсфера является сферой.
  • при гиперсфера является 3-сферой.

Расстояние от центра гиперсферы до её поверхности называется радиусом гиперсферы. Гиперсфера является -мерным подмногообразием в -мерном пространстве, все нормали к которому пересекаются в её центре.

Уравнения

Гиперсфера радиуса с центром в точке задаётся как геометрическое место точек, удовлетворяющих условию:

Гиперсферические координаты

Как известно, полярные координаты описываются следующим образом:

а сферические координаты так:

n-мерный шар можно параметризовать следующим набором гиперсферических координат:

где и .

Якобиан этого преобразования равен

Площадь и объём

Площадь поверхности гиперсферы размерности x единичного радиуса в зависимости от x.
Объём гипершара размерности x единичного радиуса в зависимости от x.

В -мерном евклидовом пространстве для гиперсферы размерности её площадь поверхности и объём , ограниченный ею (объём n-мерного шара), можно рассчитать по формулам[1][2]:

где

а  — гамма-функция. Этому выражению можно придать другой вид:

Здесь  — двойной факториал.

Так как

то объёмы шаров удовлетворяют рекуррентному соотношению

а площади их поверхностей соотносятся как

Следующая таблица показывает, что единичные сфера и шар принимают экстремальный объём для и , соответственно.

Площади и объёмы гиперсфер и гипершаров при единичном радиусе
Размерность 1 (длина) 2 (площадь) 3 (объём) 4 5 6 7 8
Единичная

сфера ( )

Десятичная

запись

6.283212.566419.739226.318931.006333.073432.469729.6866
Единичный

шар ( )

Десятичная

запись

2.00003.14164.18884.93485.26385.16774.72484.0587

Обратите внимание, что в строке "размерность" таблицы содержится размерность поверхности геометрической фигуры, а не размерность пространства, в котором она находится. Для -мерного шара размерность его "объёма" также равна , а размерность его "площади" — .

Следует отметить, что отношение объема -мерного шара к объему описанного вокруг него -куба быстро уменьшается с ростом , быстрее, чем .

Топология гиперсферы

В данном разделе под сферой будем понимать n-мерную гиперсферу, под шаром  — n-мерный гипершар, то есть , .

  • Сфера гомеоморфна факторизации шара по его границе.
  • Шар гомеоморфен факторизации .
  • Сфера является клеточным пространством. Простейшее клеточное разбиение состоит из двух клеток, гомеоморфных и . Оно получается напрямую из построения сферы как факторпространства замкнутого шара. Клеточное разбиение также можно построить по индукции, разбивая вдоль экватора на две n-мерные клетки, гомеоморфные , и сферу , являющуюся их общей границей.

Примечания

  1. Виноградов И. М. Математическая энциклопедия. — М.: Наука, 1977, — т. 5, с. 287, статья «Сфера» — формула объёма n-мерной сферы
  2. Л. А. Максимов, А. В. Михеенков, И. Я. Полищук. Лекции по статистической физике. Долгопрудный, 2011. — с. 35, вывод формулы объёма n-мерной сферы через интеграл Эйлера-Пуассона-Гаусса

См. также

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии