Пусть на множестве задано отношение эквивалентности . Тогда множество всех классов эквивалентности называется фактормножеством и обозначается . Разбиение множества на классы эквивалентных элементов называется его факторизацией.
Отображение из в множество классов эквивалентности называется факторотображением. Благодаря свойствам отношения эквивалентности, разбиение на множества единственно. Это означает, что классы, содержащие , либо не пересекаются, либо совпадают полностью. Для любого элемента однозначно определён некоторый класс из , иными словами существует сюръективное отображение из в . Класс, содержащий , иногда обозначают .
Если множество снабжено структурой, то часто отображение можно использовать чтобы снабдить фактормножество той же структурой, например топологией. В этом случае множество с индуцированной структурой называется факторпространством.
Часто отношение эквивалентности вводят следующим образом. Пусть — линейное пространство, а — некоторое линейное подпространство. Тогда два элемента таких, что , называются эквивалентными. Это обозначается . Получаемое в результате факторизации пространство называют факторпространством по подпространству . Если разлагается в прямую сумму , то существует изоморфизм из в . Если — конечномерное пространство, то факторпространство также является конечномерным и .
Если задано сюръективное отображение , тогда на множестве задаётся отношение . Можно рассмотреть фактормножество . Функция задаёт естественное взаимно-однозначное соответствие между и .
Факторизацию множества разумно применять для получения нормированных пространств из полунормированных, пространств со скалярным произведением из пространств с почти скалярным произведением и пр. Для этого вводится соответственно норма класса, равная норме произвольного его элемента, и скалярное произведение классов как скалярное произведение произвольных элементов классов. В свою очередь отношение эквивалентности вводится следующим образом (например для образования нормированного факторпространства): вводится подмножество исходного полунормированного пространства, состоящее из элементов с нулевой полунормой (кстати, оно линейно, то есть является подпространством) и считается, что два элемента эквивалентны, если разность их принадлежит этому самому подпространству.
Если для факторизации линейного пространства вводится некоторое его подпространство и считается, что если разность двух элементов исходного пространства принадлежит этому подпространству, то эти элементы эквивалентны, то фактормножество является линейным пространством и называется факторпространством.
Факторотображения q : X → Y описывается среди сюръективных отображений следеющис свойством: если Z является каким-либо топологическим пространством и f : Y → Z является какой-либо функцией, то f является непрерывным тогда и только тогда, когда f ∘ q непрерывна.
Факторпространство X/~ вместе с факторотображением q : X → X/~ описывается следующим универсальным свойством: если g : X → Z является непрерывным отображением, таким что если из a ~ b следует g(a) = g(b) для всех a и b из X, то существует единственное отображение f : X/~ → Z, такое что g = f ∘ q. Мы говорим, что g спускается до факторотображения.
Непрерывные отображения, определённые на X/~ поэтому являются в точности такими отображениями, которые возникают из непрерывных отображений, определённых на X, которые удовлетворяют отношению эквивалентности (в смысле, что они переводят эквивалентные элементы в один и тот же образ). Этот критерий обширно используется при изучении факторпространств.
Если дана непрерывная сюръекция q : X → Y, полезно иметь критерий, по которому можно определить, является ли q факторотображением. Два достаточных критерия — q является открытым[en] или закрытым отображением[en]. Заметим, что эти условия являются лишь достаточными, но не достаточными. Легко построить примеры факторотображений, которые не являются ни открытыми, ни закрытыми. Для топологических групп факторотображение является открытым.
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .