![]() Усечённый квадрат является правильным восьмиугольником: t{4} = {8} ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Усечённый куб t{4,3} или ![]() ![]() ![]() ![]() ![]() |
![]() Усечённые кубические соты[en] t{4,3,4} или ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
В геометрии усечение — это операция в пространстве любой размерности, которая отсекает вершины политопа и при которой образуются новые грани на месте вершин. Термин берёт начало от названий архимедовых тел, данных Кеплером.
В общем случае любой многогранник может быть усечён с некоторой степенью свободы выбора глубины усечения, что показано в статье Нотация Коксетера[en].
Обычно применяемый вид усечения — однородное усечение, при котором операция усечения применяется к правильному многограннику и результатом которого получается однородный многогранник[en] с равными длинами рёбер. В этом случае нет свободы выбора и в результате получаем вполне определённые геометрические тела, похожие на правильные многогранники.
В общем случае все однородные многогранники с одним обведённым узлом (в диаграмме Коксетера — Дынкина) имеют однородное усечение. Например, икосододекаэдр, предствленный символами Шлефли r{5,3} или
и имеющий диаграммы Коксетера — Дынкина
Усечённый n-сторонний многоугольник будет иметь 2n сторон. Однородно усечённый правильный многоугольник становится другим правильным многоугольником: t{n} = {2n}. Полное усечение, r{3}, является другим правильным многоугольником, двойственным[en] исходному.
Правильные многоугольники можно также представить диаграммой Коксетера — Дынкина,
![]() {3} ![]() ![]() ![]() |
![]() |
![]() t{3} = {6} ![]() ![]() ![]() |
![]() |
![]() r{3} = {3} ![]() ![]() ![]() |
Звёздчатые многоугольники могут быть тоже усечены. Усечённая пентаграмма {5/2} будет выглядеть как пятиугольник, но, в действительности, является дважды накрытым (вырожденным) десятиугольником ({10/2}) с двумя множествами наложенных друг на друга вершин и сторон. Усечённая большая гептаграмма (семиугольная звезда) {7/3} даёт четырнадцатиугольную звезду {14/3}.
Когда речь идёт об усечении правильных многогранников или мозаик из правильных многоугольников[en], обычно использыется «однородное усечение», что предполагает усечение до состояния, когда исходные грани становятся правильными многоугольниками с удвоенным числом сторон.
Последовательность на рисунке показывает пример усечения куба, где показаны четыре шага из непрерывного процесса усечения от полного куба до полного усечения куба. Конечное тело — кубооктаэдр.
Среднее изображение является однородным усечённым кубом. Он представлен символом Шлефли t{p,q,…}.
Глубокое усечение[en] — это более сильное усечение, удаляющее все исходные рёбра, но оставляющие внутренние части исходных граней. Например, усечённый октаэдр является глубоко усечённым кубом: 2t{4,3}.
Полное глубокое усечение называется биректификацией и оно сводит исходные грани к точкам. Многогранник при этом превращается в двойственный многогранник. Например, октаэдр является полным глубоким усечением куба: {3,4} = 2r{4,3}.
Ещё один тип усечения — всестороннее усечение[en], при котором отсекаются рёбра и вершины, что даёт прямоугольники вместо рёбер.
Многогранники в более высоких размерностях имеют другие уровни усечений — ранцинацию[en], при которой отсекаются грани, рёбра и вершины. В размерностях выше 5 существует стерикация[en], при которой отсекаются грани, рёбра и вершины, а также трёхмерные грани.
Усечение рёбер — это снятие фаски с многогранника, как в случае всестороннего усечения, но вершины при этом остаются, а рёбра заменяются шестиугольниками. В 4-мерном многограннике рёбра заменяются на удлинённые бипирамиды[en].
Альтернация или частичное усечение удаляет только некоторые из исходных вершин.
При частичном усечении или альтернации[en] половина вершин и рёбер полностью удаляется. Операция применима к многогранникам, грани которого имеют чётное число сторон. Грани сокращают число сторон вдвое, а квадратные грани переходят рёбра. Например, тетраэдр является альтернацией куба, h{4,3}.
Умаление[en] — более общий термин, использующийся для многогранников Джонсона, предполагает удаление одной или более вершин, рёбер или граней не трогая оставшиеся вершины. Например, триуменьшенный икосаэдр[en] получается из правильного икосаэдра путём удаления трёх вершин.
Другие частичные усечения основываются на симметрии. Например, тетраэдрально уменьшенный додекаэдр[en].
Процесс линейного усечения может быть обобщён путём разрешения параметра усечения быть отрицательным или разрешения проходить через середину ребра, что даёт самопересекающиеся звёздчатые многогранники. Такие многогранники могут быть связаны с некоторыми правильными звёздчатыми многоугольниками[en] и однородными звёздчатыми многогранниками.
![]() ⇨ |
![]() Куб {4,3} |
![]() ⇨ |
![]() Усечение t{4,3} |
![]() ⇨ |
![]() Полное усечение r{4,3} |
![]() ⇩ |
![]() Антиусечение |
![]() Гиперусечение | |||||
![]() ⇧ |
![]() Полное квазиусечение |
![]() ⇦ |
![]() Квазиусечение t{4/3,3}[en] |
![]() ⇦ |
![]() Полное гиперусечение |
![]() ⇦ |
Основа | Усечение | Полное усечение | Глубокое усечение[en] | Двойствен- ность |
Растяжение | Всеусечение[en] | Альтернация[en] | ||
---|---|---|---|---|---|---|---|---|---|
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
t0{p, q} {p, q} |
t01{p,q}[en] t{p, q} |
t1{p,q} r{p, q} |
t12{p,q}[en] 2t{p, q} |
t2{p, q} 2r{p, q} |
t02{p,q}[en] rr{p, q} |
t012{p,q}[en] tr{p, q} |
ht0{p,q}[en] h{q, p} |
ht12{p,q} s{q, p} |
ht012{p,q} sr{p, q} |
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .