Необходимое условие и достаточное условие — виды условий, логически связанных с некоторым суждением. Различие этих условий используется в логике и математике для обозначения видов связи суждений.
Если импликация является абсолютно истинным высказыванием, то истинность высказывания является необходимым условием для истинности высказывания [1][2].
Необходимыми условиями истинности утверждения А называются условия, без соблюдения которых А не может быть истинным.
Суждение P является необходимым условием суждения X, когда из (истинности) X следует (истинность) P. То есть, если P ложно, то заведомо ложно и X.
Для суждений X типа «объект принадлежит классу M» такое суждение P называется свойством (элементов) M.
Если импликация является абсолютно истинным высказыванием, то истинность высказывания является достаточным условием для истинности высказывания [1][2].
Достаточными называются такие условия, при наличии (выполнении, соблюдении) которых утверждение А является истинным.
Суждение P является достаточным условием суждения X, когда из (истинности) P следует (истинность) X, то есть в случае истинности P проверять X уже не требуется.
Для суждений X типа «объект принадлежит классу M» такое суждение P называется признаком принадлежности классу M.
Суждение K является необходимым и достаточным условием суждения X, когда K является как необходимым условием X, так и достаточным. В этом случае говорят ещё что K и X равносильны, или эквивалентны, и обозначают или .
Это следует из тождественно истинной формулы, связывающей импликацию и операцию эквиваленции[3]:
Для суждений X типа «объект принадлежит классу M» такое суждение K называется критерием принадлежности классу M.
Суждение X: «Вася получает стипендию».
Необходимое условие P: «Вася — учащийся».
Достаточное условие Q: «Вася учится в вузе без троек».
Из того, что Вася — учащийся, ещё не следует, что он получает стипендию. Но это условие необходимо, то есть если Вася не учащийся, то он заведомо не получает стипендии.
Если же Вася учится в вузе без троек, то он заведомо получает стипендию. Тем не менее, студент Вася может получать стипендию (в виде пособия), если он учится с тройками, но, например, имеет хроническое заболевание.
В импликации A → B
A — это достаточное условие для B
B — это необходимое условие для A
В этой статье не хватает ссылок на источники информации. |
![]() |
Это заготовка статьи по логике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .