WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Факторпространство по подпространству в линейной алгебре — важный частный случай факторпространств.

Определение

Пусть  — векторное пространство, а  — его подпространство. Определим отношение эквивалентности как

Тогда называют факторпространством по и обозначают .

Факторотображение

Отображение , сопоставляющее каждому элементу из класс эквивалентности, в котором он лежит, называется факторотображением.

Факторотображение даёт возможность определить на векторную структуру, задав операции следующим образом:

Факторотображение на таком пространстве линейно.

Свойства факторотображения:

  1. , то есть  — эпиморфизм;
  2. , что эквивалентно .

Связанные определения

Понятие факторпространства по подпространству позволяет определить:

  • кообраз линейного отображения ;
  • коядро линейного отображения , при условии что .
  • коразмерность ;
  • Фактор-полунорма в факторпространстве, порождённая полунормой .

Сопутствующие теоремы

  • Существование снижения на кообраз:
  •  — хаусдорфово .
Хаусдорфовость полунормированного пространства, как известно, позволяет[уточнить] определить на нём норму, а по норме и метрику.
  • Признак полноты  — полны  — полно.
  •  — гиперплоскость .
  • Неравенства для подчинённой фактор-полунормы:

См. также

Литература

  • Кутателадзе С. С. Основы функционального анализа. — 3-е изд. — Новосибирск: Изд-во Ин-та математики, 200. — 336 с. ISBN 5-86134-074-9..

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии