WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Универсальное пространство (относительно некоторого класса топологических пространств ) — топологическое пространство , такое, что принадлежит классу и каждое пространство из класса вкладывается в , то есть гомеоморфно подпространству пространства . С помощью универсальных пространств можно свести изучение класса топологических пространств к изучению подпространств конкретного пространства[1]. Часто для доказательства универсальности пространства используется теорема о диагональном отображении[1][2].

Примеры

Примеры универсальных пространств (далее  — кардинал, такой, что , то есть бесконечный):

  1. Александровский куб  — -я степень связного двоеточия (то есть пространства с топологией, состоящей из пустого множества, всего пространства и множества ) — универсален для всех T0-пространств веса [3].
  2. Тихоновский куб  — -я степень единичного отрезка  — универсален для всех тихоновских пространств веса и для всех компактных хаусдорфовых пространств веса [4].
  3. Гильбертов куб  — счётная степень единичного отрезка — универсален для всех метризуемых компактов и для всех метризуемых сепарабельных пространств[5].
  4.  — счётная степень ежа колючести  — универсально для всех метризуемых пространств веса [6].
  5. Пространство рациональных чисел (с естественной топологией) универсально для всех счётных метризуемых пространств[7].
  6. Канторов куб  — -я степень двухточечного дискретного пространства — универсален для всех нульмерных пространств веса [8].
  7. Пространство Бэра  — счётная степень дискретного пространства мощности  — универсально для всех нульмерных в смысле Ind метризуемых пространств веса [9].
  8. Подпространство евклидова пространства , образованное всеми точками, не более чем координат которых рациональны, универсально для всех метризуемых сепарабельных пространств размерности не больше [10].
  9. Существует компакт, универсальный для всех тихоновских пространств веса , таких, что (то есть размерность Лебега не больше )[11].

Примечания

Литература

  • Энгелькинг, Р. Общая топология. М.: Мир, 1986. — 752 с.
  • Келли, Дж. Л. Общая топология. М.: Наука, 1968.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии