WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Вполне регулярное пространство или тихоновское пространство — топологическое пространство, удовлетворяющее аксиомам отделимости T1 и T, то есть такое топологическое пространство, в котором все одноточечные множества замкнуты и для любого замкнутого множества и точки вне его существует непрерывная числовая функция, равная единице на множестве и нулю в точке (А. Н. Тихонов, 1930).

Свойства

  • Каждое тихоновское пространство регулярно.
  • Подпространство тихоновского пространства — тихоновское.
  • Произведение любого количества тихоновских пространств — тихоновское.
  • Топологическое пространство является тихоновским тогда и только тогда, когда оно гомеоморфно подпространству тихоновского куба некоторого веса .
  • Топологическое пространство является тихоновским тогда и только тогда, когда оно имеет хаусдорфову компактификацию.
  • Топология на пространстве тихоновская тогда и только тогда, когда она порождается некоторой отделимой равномерностью.

Примеры

Тихоновскими пространствами являются:

Литература

  • Энгелькинг, Р. Общая топология. М.: Мир, 1986. — 752 с.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии