WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Стивидорный узел
ab-обозначение= 61
Обозначение Даукера= 4, 8, 12, 10, 2, 6
Обозначение Конвея= [42]
Число мостиков = 2
Число отрезков = 8
число развязывания = 1
Род=1
Число нитей = 4
Длина косы= 7
Число пересечений= 6
Гиперболический объём= 3,163 96
Класс= гиперболический
Простой, обратимый, скрученный, альтернирующий, срезанный, кружевной
Обычный стивидорный узел. Если концы этого узла соединить, получим эквивалент математического стивидорного узла.

В теории узлов стивидорный узел или узел грузчика — это один из трёх простых узлов с числом пересечений шесть, два других — 62[en] и 63[en]. Стивидорный узел числится под номером 61 knot в списке Александера — Бриггса[en] и может быть описан как скрученный узел с четырьмя полуоборотами или как (5,1,1) кружевной узел.

Математический стивидорный узел назван по аналогии с обычным (бытовым) стивидорным узлом, который часто используется как стопор[en] на конце верёвки. Математическая версия узла может быть получена из бытовой версии путём соединения двух свободных концов верёвки, образуя завязанную в узел петлю.

Стивидорный узел является обратимым, но не ахиральным. Его многочлен Александера равен

а его многочлен Александера — Конвея равен

многочлен Джонса узла равен

[1]

Многочлены Александера и Конвея стивидорного узла теже самые, что и у узла 946, но многочлены Джонса для этих двух узлов различаются[2]. Поскольку многочлен Александера не нормирован[en]*, стивидорный узел не является расслоённым[en].

Стивидорный узел является ленточным, а потому он является также и срезанным.

Стивидорный узел является гиперболическим[en] с дополнением, имеющим объём[en] примерно 3,163 96.

См. также

Примечания

  1. 6_1|Knot Atlas
  2. Weisstein, Eric W. Stevedore's Knot (англ.) на сайте Wolfram MathWorld.

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии