WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Удвоение Уайтхеда восьмёрки — пример сателлитного узла.
Другой пример сателлитного узла для связной суммы вольмёрки и трилистника.

Сателлитный узел — конструкция позволяющая построить новый узел из двух узлов с определёнными дополнительными структурами. Эта конструкция включает связную сумму узлов а также удвоение Уайтхеда как частные случаи.

Построение

Сателлитный узел можно описать следующим образом: начните с нетривиальныого узла лежащего внутри незаузленного полнотория . «Нетривиальный» означает, что не может лежать в шаре вложенном в и не изотопен центральной кривой полнотория. Затем завязать полноторие в нетривиальный узел. То есть существуют нетривиальное вложение , такое, что и . При этом образ центральной кривой полнотория называется компаньёном .

Обычно дополнительно предполагают, что вложение раскрученно, то есть не меняют индекс зацепления двух окружностей в .

История

В 1949 году Хорст Шуберт[en] доказал[1], что каждый ориентированный узел в разлагается в связную сумму узлов и это разложение единственно с точностью до перестановки. Вскоре после этого, он понял, что может дать новое доказательство этой теоремы в анализируя несжимаемые торы, в дополнении к связной сумме. Это привело его к исследованию общих несжимаемых торов в дополнении узла, и к определению сателлитного узла[2]

См. также

Примечания

  1. Schubert, H. Die eindeutige Zerlegbarkeit eines Knotens in Primknoten. S.-B Heidelberger Akad. Wiss. Math.-Nat. Kl. 1949 (1949), 57104.
  2. Schubert, H. Knoten und Vollringe. Acta Math. 90 (1953), 131286.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии