В теории узлов ленточный узел — это узел, который ограничивает самопересекающийся круг только с ленточными особенностями. Интуитивно, этот вид особенности может быть образован путём совершения разреза в круге и пропусканием другой части круга через разрез. Более формально, этот тип особенности заключается в самопересечении по дуге. Прообраз этой дуги состоит из двух дуг круга, одна из которых полностью лежит внутри круга, а концы другой находятся на краю круга.
Секущий круг M — это гладкое вложение в с . Рассматривая функцию , заданную формулой , путём небольшой изотопии M можно добиться, чтобы f была функцией Морса на M. Можно сказать, что является ленточным узлом, если не имеет внутреннего локального максимума.
Известно, что любая лента является срезанным узлом. Известная открытая проблема, поставленная Фоксом[en] и известная как гипотеза о срезанной ленте, ставит обратный вопрос: является ли каждый срезанный узел лентой?
Лиска[1] показал, что гипотеза верна для узлов с числом мостиков[en] два. Грин и Ябука[2] показали, что это верно для трёхнитевых кружевных зацеплений. Однако Гомпф, Шарлеман и Томпсон [3] предположили, что гипотеза может быть и не верна и предложили семейства узлов, которые могут стать контрпримерами.
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .