В теории узлов гиперболический объём гиперболического зацепления равен объёму дополнения[en] зацепления по отношению к его полной гиперболической метрике. Объём обязательно является конечным вещественным числом. Гиперболический объём негиперболического узла часто считается нулевым. Согласно теореме Мостова о жёсткости объём является топологическим инвариантом зацепления[1]. Как инвариант зацепления объем изучался впервые Уильямом Тёрстоном в связи с его гипотезой геометризации[2].
Существует лишь конечное число гиперболических узлов с одинаковым объёмом[2]. Мутация гиперболического узла будет иметь тот же объём[3], так что имеется возможность состряпать примеры с тем же самым объёмом. Более того, существует произвольно большие конечные множества различных узлов с одинаковым объёмом[2]. На практике гиперболический объём очень эффективен для различения узлов, что применяется интенсивно в перечислении узлов[en]. Компьютерная программа SnapPea[en] Джеффри Викса (англ. Jeffrey Weeks) вычисляет гиперболического объёма зацепления[1].
Гиперболический объём может быть определён для любого гиперболического 3-многообразия[en]. Многообразие Викса[en] имеет наименьший возможный объём среди замкнутых многообразий (многообразие, в отличие от дополнения зацепления, не имеет каспов) и его объём примерно равен 0,9427[4].
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .