Плоский модуль над кольцом R — это такой модуль, что тензорное умножение на этот модуль сохраняет точные последовательности. Модуль называется строго плоским, если последовательность тензорных произведений точна тогда и только тогда, когда точна исходная последовательность.
Векторные пространства, свободные и, более общо, проективные модули являются плоскими. Для конечнопорождённых модулей над нётеровыми кольцами плоские модули — то же самое, что проективные модули. Для конечнопорождённых модулей над локальными кольцами все плоские модули свободны.[1]
Понятие плоского модуля было введено Серром в 1955 году.
Можно дать несколько эквивалентных определений плоского модуля.
Для любой мультипликативной системы S кольца R кольцо частных S−1R является плоским R-модулем.
Конечнопорождённый модуль является плоским тогда и только тогда, когда он является локально свободным. Локально свободный модуль над кольцом R — это такой модуль M, что его локализация по любому простому идеалу является свободным модулем над кольцом частных .
Если кольцо S является R-алгеброй, то есть существует гомоморфизм , имеет смысл спросить, является ли эта алгебра плоским R-модулем. Оказывается, что S является строго плоским модулем тогда и только тогда, когда каждый простой идеал кольца R является прообразом под действием f некоторого простого идеала из S, то есть когда отображение сюръективно (см. статью Спектр кольца).
Плоские модули можно указать на следующей цепочке включений:
Для некоторых классов колец верны и обратные включения: например, каждый модуль без кручения над дедекиндовым кольцом является плоским, плоский модуль над артиновым кольцом является проективным и проективный модуль над областью главных идеалов (или над локальным кольцом) является свободным.
Прямые суммы и прямые пределы плоских модулей являются плоскими. Это следует из того факта, что тензорное произведение коммутирует с прямыми суммами и прямыми пределами (более того, оно коммутирует со всеми копределами). Подмодули и фактормодули плоского модуля не обязательно являются плоскими (например, плоским не является модуль Z/2Z). Однако если подмодуль плоского модуля является в нём прямым слагаемым, то фактор по нему является плоским.
Модуль является плоским тогда и только тогда, когда он является прямым пределом конечнопорождённых свободных модулей.[2] Из этого следует, в частности, что каждый конечно представленный плоский модуль является проективным.
Свойство «плоскости» модуля можно выразить при помощи функтора Tor, левого производного функтора для тензорного произведения. Левый R-модуль M является плоским тогда и только тогда, когда TornR(-, M) = 0 для всех (то есть когда TornR(X, M) = 0 для всех и всех правых R-модулей X), определение плоского правого модуля аналогично. Используя этот факт, можно доказать несколько свойств короткой точной последовательности модулей:
Если A и B плоские, C в общем случае не является плоским. Однако
Плоская резольвента модуля M — это резольвента вида
где все Fi плоские. Плоские резольвенты используются при вычислении функтора Tor.
Длина плоской резольвенты — это наименьший индекс n, такой что Fn не равен нулю Fi=0 для всех i, большах n. Если модуль M допускает конечную плоскую резольвенту, её длина называется плоской размерностью модуля.[3], в противном случае говорят, что плоская размерность бесконечна. Например, если модуль M имеет плоскую размерность 0, то из точности последовательности 0 → F0 → M → 0 следует, что M изоморфен F0, то есть является плоским.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .