Резольве́нта — один из важных инструментов гомологической алгебры, в частности служащий для вычисления функторов Ext и Tor.
Компле́ксом (X, ε) над R-модулем C называется последовательность
(*) |
такая, что произведение двух последовательных гомоморфизмов равно 0. Если все X свободные, комплекс называется свободным, если проективные — проективным. Если последовательность (*) точна, то есть все гомологии Hn(X) = ker dn/im dn+1 = 0 при n > 0 и H0(X) = ker d0/im d1 = X0/im d1 = X0/ker ε изоморфна C (считая d0 : X0 → 0), то данный комплекс называется резольвентой R. Так как любой модуль C является фактормодулем свободного, то любой модуль C можно включить в некоторую свободную (и, тем более, проективную) резольвенту.
Наименьший индекс k, такой что все Xn при n > k нулевые, называется длиной резольвенты. Проективная размерность модуля — это наименьшая длина его проективной резольвенты. Например, проективный модуль — это в точности модуль проективной размерности 0.
Функторы Extn находятся согласно следующей теореме: Если C и A — R-модули, а ε : X → C — любая проективная резольвента C, то Extn(C, A) изоморфен группе когомологий Hn(X, A) = Hn(HomR(X, A)). Функторы Torn находятся согласно следующей теореме: Если C и A — R-модули, а ε : X → C — любая проективная резольвента C, то Torn(C, A) изоморфен группе гомологий Hn(X ⊗R A).
Комплексом (Y, ε) под R-модулем A называется последовательность:
(**) |
такая, что произведение двух последовательных гомоморфизмов равно 0. Если все Y инъективные, комплекс называется инъективным. Если последовательность (**) точна, то есть все когомологии Hn(Y) = ker δn+1/im δn = 0 при n > 0 и H0(Y) = ker δ1/im δ0 = ker δ1 = im ε изоморфна A (считая δ0 : 0 → Y0), то данный комплекс называется корезольвентой (обычно в этом случае «ко» опускается и говорится об инъективной резольвенте). Так как любой модуль A является подмодулем инъективного и т. д., то любой модуль A можно включить в некоторую инъективную резольвенту.
Функторы Extn находятся согласно следующей теореме: Если C и A — R-модули, а ε : A → Y — любая инъективная резольвента A, то Extn(C, A) изоморфен группе когомологий Hn(HomR(C, Y)).
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .