Конечнопорождённым мо́дулем над ассоциативным кольцом называется такой модуль, который порождается конечным числом своих элементов. Например, для правого модуля это означает, что существует конечное множество элементов таких, что любой элемент из представим в виде суммы , где — какие-то элементы кольца .
В числе свойств, тесно связанных с конечнопорождённостью — конечнопредставленность, конечносвязанность и когерентность модуля. Над нётеровым кольцом все четыре свойства эквивалентны.
Конечнопорождённые модули над полем — это в точности конечномерные векторные пространства.
Образ конечнопорождённого модуля при гомоморфизме также конечнопорождён. В общем случае, подмодули конечнопорождённого модуля не обязательно являются конечнопорождёнными. Например, рассмотрим кольцо R = Z[x1, x2…] многочленов от бесконечного числа переменных. Это кольцо конечно порождено как R-модуль. Рассмотрим его подмодуль (т. e. идеал), состоящий из всех многочленов с нулевым коэффициентом при константе. Если бы у этого модуля было конечное порождающее множество, то каждый одночлен xi должен бы был содержаться в одном из многочленов этого множества, что невозможно.
Модуль называется нётеровым, если любой его подмодуль конечно порождён. Более того, модуль над нётеровым кольцом является конечнопорождённым тогда и только тогда, когда он является нётеровым.
Пусть 0 → M′ → M → M′′ → 0 — точная последовательность модулей. Если M′ и M′′ здесь конечно порождены, то и M конечно порождён. Верны и некоторые утверждения, частично обратные к данному. Если M конечно порождён и M'' конечно представлен (это более сильное условие, чем конечнопорождённость, см. ниже), то M′ конечно порождён.
В коммутативной алгебре существует определённая связь между конечнопорождённостью и целыми элементами. Коммутативная алгебра A над R называется конечнопорождённой над R, если существует конечное множество её элементов, такое, что A — наименьшее подкольцо A, содержащее R и эти элементы. Это более слабое условие, чем конечнопорождённость: например, алгебра многочленов R[x] — конечнопорождённая алгебра, но не конечнопорождённый модуль. Следующие утверждения эквивалентны[1]:
Свойство конечнопорождённости можно сформулировать так: конечнопорождённый модуль M — это модуль, для которого существует эпиморфизм
Рассмотрим теперь эпиморфизм
из свободного модуля F в M.
Если основное кольцо R нётерово, все четыре условия эквивалентны.
Хотя условие когерентности кажется более «громоздким», чем условия конечной связанности и представленности, оно также интересно, потому что категория когерентных модулей является абелевой, в отличие от категории конечнопорождённых или конечно представленных модулей.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .