WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Кватернионный анализ — это раздел математики, изучающий регулярные кватернионнозначные функции кватернионного переменного. Из-за некоммутативности алгебры кватернионов существуют различные неравносильные подходы к определению регулярных кватернионных функций. В данной статье будет рассматриваться, в основном, подход Фютера[1].

Определение регулярной функции

Рассмотрим оператор

Функция кватернионного переменного называется регулярной, если


Гармонические функции

Пусть , тогда и . Несложно проверить, что оператор имеет вид

и совпадает с оператором Лапласа в . Таким образом, все компоненты регулярной кватернионной функции являются гармоническими функциями в . Обратно, можно показать, что для любой гармонической функции существует регулярная кватернионная функция такая, что . Из свойств гармонических функций сразу следуют многие свойства регулярных кватернионных функций, в частности, принцип максимума.

Некоторые применения

Кватернионы активно применяются для расчёта трёхмерной графики в компьютерных играх

Дифференцирование отображений

Пусть  — функция, определённая на теле кватернионов. Мы можем определить понятие левой производной в точке как такое число, что

где  — бесконечно малая от , то есть

.

Множество функций, которые имеют левую производную ограничено. Например, такие функции, как

не имеют левой производной.

Рассмотрим приращение этих функций более внимательно.

Нетрудно убедиться, что выражения

и

являются линейными функциями кватерниона . Это наблюдение является основанием для следующего определения[2].

Непрерывное отображение

называется дифференцируемым на множестве , если в каждой точке изменение отображения может быть представлено в виде

где

линейное отображение алгебры кватернионов и такое непрерывное отображение, что

Линейное отображение

называется производной отображения .

Производная может быть представлена в виде[3]

Соответственно дифференциал отображения имеет вид

Здесь предполагается суммирование по индексу . Число слагаемых зависит от выбора функции . Выражения

называются компонентами производной.

Производная удовлетворяет равенствам

Если , то производная имеет вид

Если , то производная имеет вид

и компоненты производной имеют вид

Если , то производная имеет вид

и компоненты производной имеют вид

Примечания

  1. Fueter, R. Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen // Commentarii Mathematici Helvetici. — №1. — Birkhäuser Basel, 1936. — Т. 8. — P. 371—378.
  2. Aleks Kleyn, eprint arXiv:1601.03259 Introduction into Calculus over Banach algebra, 2016
  3. Выражение не является дробью и должно восприниматься как единный символ. Данное обозначение предложено для совместимости с обозначением производной. Значение выражения при заданном является кватернионом.

Литература

См. также

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии