WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

В теории множеств, теории алгоритмов и математической логике, множество натуральных чисел называется разреши́мым или рекурси́вным или вычислимым, если существует алгоритм, который, получив на вход любое натуральное число, через конечное число шагов завершается и определяет, принадлежит ли оно данному множеству. Другими словами, множество является разрешимым, если его характеристическая функция вычислима. Множество, не являющееся разрешимым, называется неразреши́мым. Также можно говорить о разрешимом множестве, состоящем из любых конструктивных объектов, кодируемых натуральными числами. Любое разрешимое множество является перечислимым и арифметическим. Разрешимые множества соответствуют уровню арифметической иерархии (англ.).

В общем случае, подмножество множества конструктивных элементов называется разрешимым относительно , если существует алгоритм, применимый к объектам из и в случае применения к некоторому объекту дающий ответ на вопрос, принадлежит ли этот объект [1].

Существуют перечислимые множества, не являющиеся разрешимыми. Более того, перечислимое множество является разрешимым тогда и только тогда, когда его дополнение также перечислимо. Проекция разрешимого множества является перечислимой, но может не быть разрешимой. Подмножество разрешимого множества может не быть разрешимым (и даже может не быть арифметическим).

Совокупность всех разрешимых подмножеств является счётным множеством, а совокупность всех неразрешимых подмножеств  — несчётным, так как множество всех подмножеств положительных целых чисел несчётно.[2]

Существует взаимно однозначное соответствие между вычислимыми подмножествами и вычислимыми вещественными числами [2].

Определение

Подмножество называется вычислимым, если существует алгоритм, который позволяет для каждого решить, верно ли, что . Здесь - множество всех положительных целых чисел.[2]

Примеры

  • Пустое множество является разрешимым.
  • Любое конечное множество и его дополнение являются разрешимыми множествами.
  • Существуют бесконечные разрешимые множества с бесконечным дополнением. Например, множество всех чётных чисел и множество всех простых чисел являются разрешимыми.
  • Дополнение разрешимого множества является разрешимым.
  • Объединение и пересечение конечного числа разрешимых множеств также являются разрешимыми.
  • Любое перечислимое множество, дополнение которого также перечислимо, является разрешимым (теорема Поста).
  • Множество рациональных чисел, меньших числа π, является разрешимым.
  • Множество, единственный элемент которого равен единице, если гипотеза Римана верна, и нулю в противном случае, является разрешимым (так как оно конечно).
  • Множество номеров нетривиальных нулей ζ-функции, для которых нарушается гипотеза Римана, является разрешимым (хотя неизвестно, является ли оно пустым, конечным или бесконечным).
  • Множество строк, являющихся правильными доказательствами в ZFC, разрешимо. Его проекция — множество утверждений, доказуемых в ZFC — перечислимо, но, при условии непротиворечивости ZFC — неразрешимо.

См. также

Примечания

  1. Эббинхауз, 1972, с. 19.
  2. 1 2 3 Биркгоф Г., Барти Т. Современная прикладная алгебра. — М., Мир, 1976. — с. 375-376

Литература

  • Эббинхауз Г.Д., Якобс К., Ман Ф.К., Хермес Г. Машины Тьюринга и рекурсивные функции. М.: Мир, 1972. — 262 с.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии