WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Задачи тысячелетия
Равенство классов P и NP
Гипотеза Ходжа
Гипотеза Пуанкаре (решена)
Гипотеза Римана
Решение уравнений
квантовой теории
Янга — Миллса
Существование и гладкость 
решений уравнений
Навье — Стокса
Гипотеза
Бёрча — Свиннертон-Дайера

Гипо́теза Ри́мана о распределении нулей дзета-функции Римана была сформулирована Бернхардом Риманом в 1859 году.

Хотя не было найдено какой-либо закономерности, описывающей распределение простых чисел среди натуральных, Риман обнаружил, что количество простых чисел, не превосходящих , — функция распределения простых чисел, обозначаемая  — выражается через распределение так называемых «нетривиальных нулей» дзета-функции.

Многие утверждения о распределении простых чисел, в том числе, о вычислительной сложности некоторых целочисленных алгоритмов, доказаны в предположении верности гипотезы Римана.

Гипотеза Римана входит в список семи «проблем тысячелетия», за решение каждой из которых Математический институт Клэя (Clay Mathematics Institute, Кембридж, Массачусетс) выплатит награду в один миллион долларов США. В случае публикации контрпримера к гипотезе Римана учёный совет института Клэя вправе решить, можно ли считать данный контрпример окончательным решением проблемы, или же проблема может быть переформулирована в более узкой форме и оставлена открытой (в последнем случае автору контрпримера может быть выплачена небольшая часть награды)[1][2].

Формулировка

Действительная (красная) и мнимая (синяя) компоненты дзета-функции

Дзета-функция Римана определена для всех комплексных и имеет нули в отрицательных чётных, то есть , такие нули называются тривиальными.

Из функционального уравнения и явного выражения при , где  — функция Мёбиуса, следует, что все остальные нули (называемые «нетривиальными»), расположены в полосе симметрично относительно так называемой «критической линии» .

Гипотеза Римана

Гипотеза Римана утверждает, что:

«Все нетривиальные нули дзета-функции имеют действительную часть, равную »,

то есть являются комплексными числами, расположенными на прямой .

Обобщённая гипотеза Римана

Обобщённая гипотеза Римана - аналог гипотезы Римана для обобщений дзета-функций, называемых L-функциями Дирихле.

Эквивалентные формулировки

В 1901 году Хельге фон Кох показал, что гипотеза Римана эквивалентна следующему утверждению о распределении простых чисел:

при

Ещё несколько эквививалентных формулировок:

  • Для всех выполняется неравенство
  • Для всех выполняется неравенство где ψ(x) — вторая функция Чебышёва,
  • Для всех выполняется неравенство где  — сумма делителей числа , а  — постоянная Эйлера-Маскерони. Неравенство нарушается при n = 5040 и некоторых меньших значениях (всего 27 исключений), но Гай Робин в 1984 году показал, что оно соблюдается для всех бóльших целых, тогда и только тогда, когда гипотеза Римана верна, и что последовательность исключений из условия теоремы Робина бесконечно много, если гипотеза Римана неверна. Известно также, что наименьшее из таких чисел-исключений n ≥ 5041 должно быть сверхизбыточным числом[en][3].
  • Для всех выполняется неравенство где  — гармоническое число.[4]
  • Для любого положительного выполняется неравенство , где  — функция Мертенса, см. также обозначение O большое. Более сильная гипотеза была опровергнута в 1985 году[5].
  • Гипотеза Римана эквивалентна следующему равенству: .
  • Показано, что гипотеза Римана истинна тогда и только тогда, когда интегральное уравнение

не имеет нетривиальных решений для .

История

В 1896 году Адамар и Валле-Пуссен независимо доказали, что нули дзета-функции не могут лежать на прямых и .

В 1900 году Давид Гильберт включил гипотезу Римана в список 23 нерешённых проблем как часть восьмой проблемы, совместно с гипотезой Гольдбаха.

В 1914 году Харди доказал, что на критической линии находится бесконечно много нулей, а позже совместно с Литлвудом дал нижнюю оценку доли нулей, лежащей на критической линии, которую потом улучшали разные математики.

Некоторые нетривиальные нули располагаются экстремально близко друг к другу. Это свойство известно как «явление Лемера».[6]

Титчмарш и Ворос в 1987 году показали, что дзета-функция может быть разложена в произведение через свои нетривиальные нули в разложение Адамара.

На 2004 год численными методами было проверено, что более 1013 (более десяти триллионов) первых нетривиальных нулей дзета-функции Римана, удовлетворяют этой гипотезе[7][8].

Соображения об истинности гипотезы

В обзорных работах (Bombieri, 2000, Conrey, 2003, Sarnak, 2008) отмечается, что данные в пользу истинности гипотезы Римана сильны, но оставляют место для обоснованных сомнений. Отдельные авторы, однако, убеждены в ложности гипотезы (в частности, так считал Джон Литлвуд).

Среди данных, позволяющих предполагать истинность гипотезы, можно выделить успешное доказательство сходных гипотез (в частности, гипотезы Римана о многообразиях над конечными полями[9]). Это наиболее сильный теоретический довод, позволяющий предположить, что условие Римана выполняется для всех дзета-функций, связанных с автоморфными отображениями (англ.), что включает классическую гипотезу Римана. Истинность аналогичной гипотезы уже доказана[10] для дзета-функции Сельберга (англ.), в некоторых отношениях сходной с функцией Римана, и для дзета-функции Госса (англ.) (аналог дзета-функции Римана для функциональных полей).

С другой стороны, некоторые из дзета-функций Эпштейна (англ.) не удовлетворяют условию Римана, хотя они имеют бесконечное число нулей на критической линии. Однако эти функции не выражаются через ряды Эйлера и не связаны напрямую с автоморфными отображениями.

К «практическим» доводам в пользу истинности Римановской гипотезы относится вычислительная проверка большого числа нетривиальных нулей дзета-функции в рамках проекта ZetaGrid[en].

Связанные проблемы

Две гипотезы Харди-Литтлвуда

В 1914 году Годфри Харольд Харди доказал,[11] что функция имеет бесконечно много вещественных нулей.

Пусть есть количество вещественных нулей, а количество нулей нечётного порядка функции , лежащих на интервале .

Две гипотезы Харди и Литлвуда[12] (о расстоянии между вещественными нулями и о плотности нулей на интервалах при достаточно большом , и как можно меньшем значении , где сколь угодно малое число), определили два направления в исследовании дзета-функции Римана:

  1. Для любого существует , такое что при и интервал содержит нуль нечётного порядка функции .
  2. Для любого существуют такие и , что при и справедливо неравенство .

Гипотеза А. Сельберга

В 1942 году Атле Сельберг исследовал проблему Харди-Литтлвуда 2 и доказал, что для любого существуют и , такие что для и справедливо неравенство .

В свою очередь, Атле Сельберг высказал гипотезу,[13] что можно уменьшить показатель степени для величины .

В 1984 году А. А. Карацуба доказал[14][15][16], что при фиксированном с условием , достаточно большом и , промежуток содержит не менее вещественных нулей дзета-функции Римана . Тем самым он подтвердил гипотезу Сельберга.

Оценки А. Сельберга и А. А. Карацубы являются неулучшаемыми по порядку роста при .

В 1992 году А. А. Карацуба доказал,[17] что аналог гипотезы Сельберга справедлив для «почти всех» промежутков , , где  — сколь угодно малое фиксированное положительное число. Метод, разработанный Карацубой, позволяет исследовать нули дзета-функции Римана на «сверхкоротких» промежутках критической прямой, то есть на промежутках , длина которых растёт медленнее любой, даже сколь угодно малой, степени . В частности, он доказал, что для любых заданных чисел , с условием почти все промежутки при содержат не менее нулей функции . Эта оценка весьма близка к той, что следует из гипотезы Римана.

Интересные факты

  • Знаменит ответ Гильберта на вопрос о том, каковы будут его действия, если он по какой-либо причине проспит пятьсот лет и вдруг проснётся. Математик ответил, что первым делом он спросит, была ли доказана гипотеза Римана.
  • Гипотеза Римана относится к знаменитым открытым проблемам математики, в число которых в своё время входила и теорема Ферма. Как известно, Ферма сделал запись о том, что доказал свою теорему, не оставив самого доказательства, и тем самым бросил вызов следующим поколениям математиков. Британский математик Г. Х. Харди использовал ситуацию с этими проблемами для обеспечения собственной безопасности во время морских путешествий. Каждый раз перед отправкой в путешествие он отправлял одному из своих коллег телеграмму: «Доказал гипотезу Римана. Подробности по возвращении.» Харди считал, что Бог не допустит повторения ситуации с теоремой Ферма и позволит ему благополучно вернуться из плавания[18].

Отображение в искусстве

  • В пятой серии первого сезона сериала «Числа» один из героев пытался решить эту задачу, и преступники надеялись с помощью его решения гипотезы Римана вскрывать шифры.

См. также

Примечания

  1. Weisstein, Eric W. Riemann Hypothesis (англ.) на сайте Wolfram MathWorld.
  2. Rules for the Millennium Prizes Архивная копия от 10 декабря 2011 на Wayback Machine
  3. Akbary, Amir; Friggstad, Zachary (2009), «Superabundant numbers and the Riemann hypothesis», American Mathematical Monthly 116 (3): 273—275, doi:10.4169/193009709X470128
  4. Jeffrey C. Lagarias (2002). “An elementary problem equivalent to the Riemann hypothesis”. The American Mathematical Monthly. 109 (6): 534—543. DOI:10.2307/2695443. JSTOR 2695443. MR 1908008.
  5. Andrew Odlyzko, Herman te Riele (1985). “Disproof of the Mertens conjecture”. Journal für die reine und angewandte Mathematik. 357: 138—160. MR 0783538. (недоступная ссылка)
  6. Weisstein, Eric W. Lehmer's Phenomenon (англ.) на сайте Wolfram MathWorld.
  7. Ed Pegg Jr. «Ten Trillion Zeta Zeros» (англ.)
  8. Стюарт, 2016, с. 245.
  9. Deligne P. (1974). “La conjecture de Weil. I”. Publications Mathématiques de l'IHÉS. 43: 273—307. DOI:10.1007/BF02684373. MR 0340258.
  10. Sheats J. (1998). “The Riemann hypothesis for the Goss zeta function for Fq[T]”. Journal of Number Theory. 71 (1): 121—157. DOI:10.1006/jnth.1998.2232.
  11. Hardy, G.H. (1914). “Sur les zeros de la fonction ”. Comp. Rend. Acad. Sci. (158): 1012—1014.
  12. Hardy, G. H. & Littlewood, J. E. (1921), "The zeros of Riemann's zeta-function on the critical line", Math. Z. Т. 10 (3–4): 283–317, DOI 10.1007/BF01211614
  13. Selberg, A. (1942). “On the zeros of Riemann's zeta-function”. Shr. Norske Vid. Akad. Oslo (10): 1—59.
  14. Карацуба, А. А. (1984). “О нулях функции ζ(s) на коротких промежутках критической прямой”. Изв. РАН. Сер. матем. (48:3): 569—584.
  15. Карацуба, А. А. (1984). “Распределение нулей функции ζ(1/2 + it)”. Изв. РАН. Сер. матем. (48:6): 1214—1224.
  16. Карацуба, А. А. (1985). “О нулях дзета-функции Римана на критической прямой”. Труды МИАН (167): 167—178.
  17. Карацуба, А. А. (1992). “О количестве нулей дзета-функции Римана, лежащих на почти всех коротких промежутках критической прямой”. Изв. РАН. Сер. матем. (56:2): 372—397.
  18. С. Сингх Великая теорема Ферма. ISBN 5-900916-61-8

Ссылки

Литература

  • Иэн Стюарт. Величайшие математические задачи. М.: Альпина нон-фикшн, 2016. — 460 с. ISBN 978-5-91671-507-1.
  • Джон Дербишир. Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии