WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Индуктивная размерность — тип определения размерности топологического пространства, основанный на наблюдении, что сферы в Евклидовом пространстве имеют размерность на единицу меньше.

Существует два варианта определения индуктивной размерности, так называемые большая и малая индуктивные размерности; для пространства они обычно обозначаются и соответственно. В большинстве топологических пространств встречающихся в приложениях обе размерности совпадают, и они также равны размерности Лебега.

Определение

По определению размерность пустого множества считается равной ; то есть

— малая индуктивная размерность топологического пространства , определяется как наименьшее число такое, что для любой точки и любой её открытой окрестности , существует открытое множество , что , то есть малая индуктивная размерность границы не превосходит и

где обозначает замыкание .

— большая индуктивная размерность определяется похожим способом: как наименьшее число такое, что для любого замкнутого множества и любой его открытой окрестности , существует открытое множество , что и

Замечания

  • Размерность Лебега является ещё одним вариантом определения размерности топологического пространства; термин «топологическая размерность» обычно используется именно для размерности Лебега, для пространства она обывно обозначаются .

Свойства

  • тогда и только тогда, когда
  • (Теорема Урысона) для нормального пространства со счётной базой, выполняется равенство
Иначе говоря, у сепарабельных и метризуемых пространств, обе индуктивные размерности совпадают с размерностью Лебега.
  • Для метризуемых пространств выполнено следующее (Мирослав Катетов)
  • Если пространство компактно и хаусдорфово то (П. С. Александров)
    • Оба эти неравенства могут быть строгими (В. В. Филиппов)
  • Сепарабельное метрическое пространство удовлетворяет неравенству тогда и только тогда, когда для каждого замкнутого подпространства пространства , каждое непрерывное отображение допускает непрерывное продолжение .

Дальнейшее чтение

  • Александров П. С., Пасынков Б. А. Введение в теорию размерности. М.: Наука, 1973
  • Crilly, Tony, 2005, "Paul Urysohn and Karl Menger: papers on dimension theory" in Grattan-Guinness, I., ed., Landmark Writings in Western Mathematics. Elsevier: 844-55.
  • R. Engelking, Theory of Dimensions. Finite and Infinite, Heldermann Verlag (1995), ISBN 3-88538-010-2.
  • V. V. Fedorchuk, The Fundamentals of Dimension Theory, appearing in Encyclopaedia of Mathematical Sciences, Volume 17, General Topology I, (1993) A. V. Arkhangel'skii and L. S. Pontryagin (Eds.), Springer-Verlag, Berlin ISBN 3-540-18178-4.
  • V. V. Filippov, On the inductive dimension of the product of bicompacta, Soviet. Math. Dokl., 13 (1972), N° 1, 250-254.
  • A. R. Pears, Dimension theory of general spaces, Cambridge University Press (1975).

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии