Аналитическая теория чисел — раздел теории чисел, в котором свойства целых чисел исследуются методами математического анализа. Наиболее известные результаты относятся к исследованию распределения простых чисел и аддитивным проблемам Гольдбаха и Варинга.
Первым шагом в этом направлении стал метод производящих функций, сформулированный Эйлером. Для определения количества целочисленных неотрицательных решений линейного уравнения вида
где — натуральные числа, Эйлер построил производящую функцию, которая определяется как произведение сходящихся рядов (при )
и является суммой членов геометрической прогрессии, при этом
где — число решений изучаемого уравнения. На основе этого метода был построен круговой метод Харди — Литлвуда[1].
В работе над квадратичным законом взаимности Гаусс рассмотрел конечные суммы вида , которые могут быть представлены в виде суммы синусов и косинусов (по формуле Эйлера), из-за чего они являются частным случаем тригонометрических сумм[1]. Метод тригонометрических сумм, позволяющий оценивать число решений тех или иных уравнений или систем уравнений в целых числах играет большую роль в аналитической теории чисел. Основы метода разработал и впервые применил к задачам теории чисел И. М. Виноградов.
Работая над доказательством теоремы Евклида о бесконечности простых чисел, Эйлер рассмотрел произведение по всем простым числам и сформулировал тождество:
которое стало основанием для теорий дзета-функций[1]. Наиболее известной и до сих пор не решённой проблемой аналитической теории чисел является доказательство гипотезы Римана о нулях дзета-функции, утверждающей, что все нетривиальные корни уравнения лежат на так называемой критической прямой , где — дзета-функция Римана.
Для доказательства теоремы о бесконечности простых чисел в общем виде Дирихле использовал произведения по всем простым числам, аналогичные эйлерову произведению, и показал, что
при этом функция , получившая название характер Дирихле, определена так, что удовлетворяет следующим условиям: она является периодической, вполне мультипликативной и не равна тождественно нулю. Характеры и ряды Дирихле нашли применение и в других разделах математики, в частности в алгебре, топологии и теории функций[1].
Чебышёв показал, что число простых чисел, не превосходящих , обозначенное как , стремится к бесконечности по следующему закону[1]:
Другим направлением аналитической теории чисел является применение комплексного анализа в доказательстве теоремы о распределении простых чисел.
Для улучшения этой статьи по математике желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .