В теории множеств, теории алгоритмов и математической логике, множество натуральных чисел называется разреши́мым или рекурси́вным или вычислимым, если существует алгоритм, который, получив на вход любое натуральное число, через конечное число шагов завершается и определяет, принадлежит ли оно данному множеству. Другими словами, множество является разрешимым, если его характеристическая функция вычислима. Множество, не являющееся разрешимым, называется неразреши́мым. Также можно говорить о разрешимом множестве, состоящем из любых конструктивных объектов, кодируемых натуральными числами. Любое разрешимое множество является перечислимым и арифметическим. Разрешимые множества соответствуют уровню арифметической иерархии .
В общем случае, подмножество множества конструктивных элементов называется разрешимым относительно , если существует алгоритм, применимый к объектам из и в случае применения к некоторому объекту дающий ответ на вопрос, принадлежит ли этот объект [1].
Существуют перечислимые множества, не являющиеся разрешимыми. Более того, перечислимое множество является разрешимым тогда и только тогда, когда его дополнение также перечислимо. Проекция разрешимого множества является перечислимой, но может не быть разрешимой. Подмножество разрешимого множества может не быть разрешимым (и даже может не быть арифметическим).
Совокупность всех разрешимых подмножеств является счётным множеством, а совокупность всех неразрешимых подмножеств — несчётным, так как множество всех подмножеств положительных целых чисел несчётно.[2]
Существует взаимно однозначное соответствие между вычислимыми подмножествами и вычислимыми вещественными числами [2].
Подмножество называется вычислимым, если существует алгоритм, который позволяет для каждого решить, верно ли, что . Здесь - множество всех положительных целых чисел.[2]
![]() |
Это заготовка статьи по математической логике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .