Определение
Тензор электромагнитного поля определяется через 4-потенциал по формуле
Хотя он выражается через обычные производные, а не ковариантные, он является тензором относительно произвольных преобразований координат. Это следует из того, что то же выражение можно записать через ковариантные производные:
Если рассматривать 4-потенциал как 1-форму на пространстве-времени, то тензор электромагнитного поля выражается как внешняя производная
Отсюда также очевидна его инвариантность.
Свойства
— антисимметричный тензор 2-го ранга, имеет 6 независимых компонент.
- Преобразования координат сохраняют два инварианта, следующих из тензорных свойств поля[1]:
Выражение для компонент
Ковариантные компоненты тензора электромагнитного поля имеют вид
Такая зависимость антисимметричного тензора от двух векторов условно записывается как
Контравариантные компоненты (в пространстве с метрикой Минковского) имеют вид
что обозначается как
Таким образом, оказывается, что векторы электрического и магнитного полей преобразуются в общем случае линейных преобразований не как векторы, а как компоненты тензора типа (0,2). Закон их преобразований при переходе в систему отсчёта, движущуюся со скоростью V вдоль оси X, имеет вид
Применение
Непосредственно из определения следует, что
В компонентах это выражение принимает вид
где
— символ Леви-Чивиты для 4-хмерного пространства. Если расписать это выражение через компоненты векторов электрического и магнитного поля, то оно совпадёт с первой парой уравнений Максвелла:
Вторая пара уравнений Максвелла выражается через тензор электромагнитного поля как
где
— вектор 4-тока.
Также можно записать их через звёздочку Ходжа:
Сила Лоренца выражается через вектор 4-скорости частицы и заряд по формуле
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .