WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Классическая электродинамика
Электричество · Магнетизм
См. также: Портал:Физика

Зако́н Ампе́ра  — закон взаимодействия электрических токов. Впервые был установлен Андре Мари Ампером в 1820 для постоянного тока. Из закона Ампера следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила оказывается линейно зависимой как от тока, так и от магнитной индукции . Выражение для силы , с которой магнитное поле действует на элемент объёма проводника с током плотности , находящегося в магнитном поле с индукцией , в Международной системе единиц (СИ) имеет вид:

Если ток течёт по тонкому проводнику, то , где  — «элемент длины» проводника — вектор, по модулю равный и совпадающий по направлению с током. Тогда предыдущее равенство можно переписать следующим образом:

Сила , с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока в проводнике и векторному произведению элемента длины проводника на магнитную индукцию :

Направление силы определяется по правилу вычисления векторного произведения, которое удобно запомнить при помощи правила левой руки.

Модуль силы Ампера можно найти по формуле:

где  — угол между вектором магнитной индукции и направлением, вдоль которого течёт ток.

Сила максимальна, когда проводник с током расположен перпендикулярно линиям магнитной индукции ( ):

, где  — длина проводника.

Два параллельных проводника

Два бесконечных параллельных проводника в вакууме

Наиболее известным примером, иллюстрирующим силу Ампера, является следующая задача. В вакууме на расстоянии друг от друга расположены два бесконечных параллельных проводника, в которых в одном направлении текут токи и . Требуется найти силу, действующую на единицу длины проводника.

В соответствии с законом Био — Савара — Лапласа бесконечный проводник с током в точке на расстоянии создаёт магнитное поле с индукцией

где  — магнитная постоянная.

Теперь по закону Ампера найдём силу, с которой первый проводник действует на второй:

По правилу буравчика, направлена в сторону первого проводника (аналогично и для , а значит, проводники притягиваются).

Модуль данной силы (  — расстояние между проводниками):

Интегрируем, учитывая только проводник единичной длины (пределы от 0 до 1):

Полученная формула используется в СИ для установления численного значения магнитной постоянной . Действительно, ампер, являющийся одной из основных единиц СИ, определяется в ней как «сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2⋅10−7 ньютона»[1].

Таким образом, из полученной формулы и определения ампера следует, что магнитная постоянная равна Н/А² или, что то же самое, Гн/ м точно.

Проявления

  • Электродинамическая деформация шин (токопроводов) трёхфазного переменного тока на подстанциях при воздействии токов короткого замыкания.
  • Раздвигание токопроводов рельсотронов при выстреле.

Применение

  • Любые узлы в электротехнике, где под действием электромагнитного поля происходит движение каких-либо элементов, используют закон Ампера. Самый широко распространённый и используемый чуть ли не во всех технических конструкциях агрегат, в основе своей работы использующий закон Ампера - это электродвигатель, либо, что конструктивно почти то же самое, генератор.

Именно под действием силы Ампера происходит вращение ротора, поскольку на его обмотку влияет магнитное поле статора, приводя в движение. Любые транспортные средства на электротяге для приведения во вращение валов, на которых находятся колёса, используют силу Ампера (трамваи, электрокары, электропоезда и др). Также магнитное поле приводит в движение механизмы электрозапоров (электродвери, раздвигающиеся ворота, двери лифта). Другими словами, любые устройства, которые работают на электричестве и имеют движущиеся узлы, основаны на эксплуатации закона Ампера.

  • Также он находит применение во многих других видах электротехники, например, в громкоговорителе. В громкоговорителе или динамике для возбуждения мембраны, которая формирует звуковые колебания используется постоянный магнит. На него под действием электромагнитного поля, создаваемого расположенным рядом проводником с током, действует сила Ампера, которая изменяется в соответствии с нужной звуковой частотой.
  • Принцип работы электромеханических машин (движение части обмотки ротора относительно части обмотки статора).
  • Электродинамическое сжатие плазмы, например, в токамаках, установках Z-пинч.
  • Электродинамический метод прессования.

История

В 1820 году Ханс Кристиан Эрстед открыл, что провод, по которому идёт ток, создает магнитное поле и заставляет отклоняться стрелку компаса. Он заметил, что магнитное поле перпендикулярно току, а не параллельно ему, как можно было бы ожидать. Ампер, вдохновлённый демонстрацией опыта Эрстеда, обнаружил, что два параллельных проводника, по которым течёт ток, притягиваются или отталкиваются в зависимости от того, в одну ли или разные стороны по ним идёт ток. Таким образом ток не только производит магнитное поле, но магнитное поле действует на ток. Уже через неделю после объявления Эрстедом о своём опыте, Ампер предложил объяснение: проводник действует на магнит, потому что в магните течёт ток по множеству маленьких замкнутых траекторий[2][3].

Сила Ампера и третий закон Ньютона

Пусть есть два тонких проводника с токами и , заданные кривыми и . Сами кривые могут быть заданы радиус-векторами и . Найдем силу, действующую непосредственно на токовый элемент одного провода со стороны токового элемента другого провода. По закону Био — Савара — Лапласа токовый элемент , находящийся в точке , создает в точке элементарное магнитное поле . По закону Ампера сила, действующая со стороны поля на токовый элемент , находящийся в точке , равна

Токовый элемент , находящийся в точке , создает в точке элементарное магнитное поле

.

Сила Ампера, действующая со стороны поля на токовый элемент , находящийся в точке , равна

В общем случае для произвольных и силы и даже не коллинеарны, а значит, не подчиняются третьему закону Ньютона: . Однако ничего страшного в этом нет. Физиками доказано, что постоянный ток может течь только по замкнутому контуру. Поэтому третий закон Ньютона должен действовать только для сил, с которыми взаимодействуют два замкнутых проводника с током. Убедимся, что для двух таких проводников третий закон Ньютона выполняется.

Пусть кривые и являются замкнутыми. Тогда ток создает в точке магнитное поле

где интегрирование по производится в направлении течения тока . Сила Ампера, действующая со стороны поля на контур с током , равна

где интегрирование по производится в направлении течения тока . Что характерно, порядок интегрирования значения не имеет.

Аналогично сила Ампера, действующая со стороны поля , создаваемого током , на контур с током , равна

Равенство эквивалентно равенству .

Чтобы доказать это последнее равенство, заметим, что выражение для силы Ампера очень похоже на выражение для циркуляции магнитного поля по замкнутому контуру, в котором внешнее скалярное произведение заменили векторным произведением. Тогда понятно, в каком направлении нужно двигаться.

Пользуясь тождеством Лагранжа, двойное векторное произведение в левой части доказываемого равенства можно записать так:

Тогда левая часть доказываемого равенства примет вид:

Рассмотрим отдельно интеграл , который можно переписать в следующем виде:

Сделав замену переменной во внутреннем интеграле на , где вектор изменяется по замкнутому контуру , обнаружим, что внутренний интеграл является циркуляцией градиентного поля по замкнутому контуру. А значит, он равен нулю:

Значит, и весь двойной криволинейный интеграл равен нулю. В таком случае для силы можно записать:

Выражение для силы можно получить из выражения для силы , просто исходя из соображений симметрии. Для этого произведем замену индексов: 2 меняем на 1, а 1 — на 2. В таком случае для силы можно записать:

Теперь совершенно очевидно, что . Значит, сила Ампера удовлетворяет третьему закону Ньютона в случае замкнутых проводников.

Закон Грассмана

Закон взаимодействия двух элементарных электрических токов, известный как закон Ампера, на самом деле был позднее предложен Грассманом. Оригинальный же закон Ампера имел несколько иную форму: сила, действующая со стороны токового элемента , находящегося в точке , на токовый элемент , находящийся в точке , равна

Сила, действующая со стороны токового элемента , находящегося в точке , на токовый элемент , находящийся в точке , равна

Формула силы может быть получена из формулы силы просто из соображений симметрии, т.е. заменой индексов: 2 на 1, а 1 — на 2. При этом легко видеть, что , т.е. оригинальный закон Ампера удовлетворяет третьему закону Ньютона уже на стадии дифференциальной формы. Поэтому проверка этого закона в интегральной форме не требуется.

Можно доказать, что в интегральной форме оригинального закона Ампера силы, с которыми взаимодействуют два замкнутых проводника с постоянными токами, получаются теми же самыми, что и в законе Грассмана.

Максвелл предложил наиболее общую форму закона взаимодействия двух элементарных проводников с током, в которой присутствует коэффициент k, который не может быть определен без некоторых предположений, следуемых из экспериментов, в которых активный ток образует замкнутый контур[4]:

В своей теории Ампер принял , Гаусс принял , так же, как Грассман и Клаузиус. В неэфирных электронных теориях Вебер принял , а Риман принял . Ритц оставил неопределенным в своей теории.

Если принять , получится выражение для оригинального закона Ампера. Если же взять , получим:

Здесь первые два слагаемых были объединены по тождеству Лагранжа, третье же слагаемое при интегрировании по замкнутым контурам и даст ноль. Действительно,

Таким образом получаем форму закона Ампера, данную Максвеллом:

Нужно отметить, что хотя сила Ампера получается всегда одной и той же при различных , момент сил, тем не менее, может отличаться. Например, при взаимодействии двух бесконечных проводов, скрещенных под прямым углом, сила взаимодействия будет равна нулю. Если рассчитать момент сил, действующий на каждый из проводов, по формуле Грассмана, ни один из них не будет равен нулю (хотя в сумме они будут равны нулю). Если же рассчитать момент сил по оригинальному закону Ампера, каждый из них будет равен нулю.

Можно заметить, что оригинальный закон Ампера можно использовать для расчета силы взаимодействия незамкнутых токов, как правило, непостоянных, поскольку третий закон Ньютона никогда не нарушается. В случае же закона Грассмана приходится вводить дополнительную физическую сущность — магнитное поле, чтобы компенсировать несоблюдение третьего закона Ньютона.

Закон Ампера как релятивистский эффект

Электрический ток в проводнике это движение зарядов относительно других зарядов. Данное движение приводит в СТО к эффектам, которые в классической физике объясняются отдельной физической сущностью — магнетизмом. В СТО данные эффекты не требуют введения магнитизма, и, в первом приближении, достаточно рассмотрения кулоновских взаимодействий. Для описания закона Ампера в рамках СТО металлический проводник описывают прямой с некоторой линейной плотностью положительных зарядов и прямой с подвижными зарядами. Заряд инвариантен, поэтому эффект Лоренцева сокращения длины создаёт разницу между плотностью положительных и отрицательных зарядов в изначально нейтральном металлическом проводе. Отсюда и возникновение силы притяжения или отталкивания между двумя проводниками с током.[5][6]

Примечания

  1. ГОСТ 8.417-2002. Государственная система обеспечения единства измерений. Единицы величин. (недоступная ссылка). Проверено 7 ноября 2012. Архивировано 10 ноября 2012 года.
  2. Etienne Klein, Marc Lachieze-Rey. The Quest for Unity: The Adventure of Physics. — New York: Oxford University Press, 1999. — С. 43-44. ISBN 0-19-512085-X.
  3. Roger G Newton. From Clockwork to Crapshoot: A History of Physics. — The Belknap Press of Harward University Press, 2007. — С. 137. ISBN 978-0-674-03487-7.
  4. Maxwell, James Clerk. Treatise on Electricity and Magnetism. — Oxford, 1904. — С. 173.
  5. Лекция 1. Магнитостатика. Релятивистский характер магнитного поля. // Санкт-Петербургский политехнический университет Петра Великого (СПбПУ)
  6. Савельев И. В. Курс общей физики: Учеб. пособие. В 3-х т. Т. 2. Электричество и магнетизм. Волны. Оптика. — 3-е изд., испр. — М.: Наука. Гл. ред. физ.-мат. лит., 1988. — 496 с. С.120

См. также

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии