Окружность девяти точек — это окружность, проходящая через середины всех трёх сторон треугольника.
Она также называется окружностью Эйлера, окружностью Фейербаха, окружностью шести точек, окружностьюТеркема, окружностью двенадцати точек, включая точки Фейербаха , окружностью n-точек, полуописанной окружностью.
Теорема-определение
Треугольник, описанная вокруг него окружность (черная) и её центр (чёрный), высоты треугольника (часть высоты, расположенная внутри окружности Эйлера, синяя, а вне — её чёрная) и окружность девяти точек (синяя) и её центр (синий)
Окружность девяти точек получила такое название из-за следующей теоремы:
Основания трёх высот произвольного треугольника, середины трёх его сторон и середины трёх отрезков, соединяющих его вершины с ортоцентром, лежат все на одной окружности.
Иначе говоря, окружность девяти точек является описанной окружностью для следующих трёх треугольников:
треугольник Эйлера (или треугольник Фейербаха, треугольник Эйлера — Фейербаха) — треугольник, вершинами которого служат середины трёх отрезков, соединяющих ортоцентр и вершины.
Из девяти точек на окружности Эйлера три являются серединами отрезков, соединяющих вершины с ортоцентром (вершины треугольника Эйлера-Фейербаха). Эти три точки являются отражениями середин сторон треугольника относительно центра окружности девяти точек.
Последнее свойство гомотетичности (подобия) означает, что окружность девяти точек делит пополам любой отрезок, который соединяет ортоцентр с произвольной точкой, лежащей на описанной окружности.
Теорема Мавло.[3]: треугольник на своей окружности девяти точек отсекает внешним образом три дуги таким образом, что длина наибольшей из них равна сумме длин двух оставшихся дуг. Например, на рисунке выше теорема Мавло дает равенство: дуга IF=дуга HE+дуга GD.
В симметричном виде теорема Мавло может быть записана в виде:
Это эквивалентно тому, что наибольшая из трех дуг равна сумме двух других.
Последнее свойство — аналог свойств для расстояний , и от вершин дополнительного треугольника (треугольника с вершинами в серединах сторон данного треугольника). до точки Фейербаха, а не для дуг. Аналогичное соотношение также встречается в теореме Помпею.
Теорема Гамильтона. Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника, имеющих ту же самую окружность Эйлера (окружность девяти точек), что и исходный остроугольный треугольник.
Иллюстрация к теореме Фейербаха. Точкой Фейербаха считается наиболее близкая к вершине A отмеченная жирно точка на окружности
На описанной окружности треугольника существуют ровно три точки, таких что их прямая Симсона касается окружности Эйлера треугольника , причем эти точки образуют правильный треугольник. Стороны этого треугольника параллельны сторонам треугольника Морлея.
Гипербола Киперта
Если описанная около треугольника гипербола проходит через точку пересечения высот, то она равносторонняя (то есть её асимптоты перпендикулярны)[4]. Точка пересечения асимптот равносторонней гиперболы лежит на окружности девяти точек[4].
Частные случаи взаимного расположения окружности девяти точек и описанной окружности
В треугольнике по отношению к описанной окружностиокружность девяти точек (или окружность Эйлера) может располагаться следующим образом:
Она касается описанной окружности в единственном случае, если треугольник прямоугольный. При этом касание двух окружностей идет в вершине прямого угла треугольника.
Эйлер в 1765 году доказал, что основания высот и середины сторон лежат на одной окружности (отсюда название «окружность шести точек»). Первое полное доказательство общего результата было, по-видимому, опубликовано Карлом Фейербахом в 1822 году (вместе с теоремой, носящей его имя), но есть указания на то, что оно было известно и ранее[2].
Вариации и обобщения
Четыре окружности девяти точек треугольников внутри четырёхугольника. Известна теорема: В произвольном выпуклом четырёхугольнике окружности девяти точек треугольников , на которые его разбивают две диагонали, пересекаются в одной точке[5].
Известна теорема: Если в выпуклом четырёхугольнике перпендикулярны диагонали, то на одной окружности (окружность восьми точек четырёхугольника) лежат восемь точек: середины сторон и проекции середин сторон на противоположные стороны[6].
Окружность девяти точек является частным случаем коники девяти точек. Если точка P — ортоцентр треугольника ABC, то коника девяти точек полного четырёхугольника PABC становится окружностью девяти точек.
16 окружностей Фейербаха, которых касается окружность 9 точек. На рисунке справа зелёным цветом показаны 16 известных окружностей Фейербаха, которые касаются окружности 9 точек, показанной красным цветом (сам треугольник показан чёрным цветом)
16 окружностей Фейербаха, которые касаются окружности 9 точек в системе с данным ортоцентром
↑ Математика в задачах. Сборник материалов выездных школ команды Москвы на Всероссийскую математическую олимпиаду/ Под редакцией А. А. Заславского, Д. А. Пермякова, А. Б. Скопенкова, М. Б. Скопенкова и А. В. Шаповалова. c. 118, задача 9
↑ Математика в задачах. Сборник материалов выездных школ команды Москвы на Всероссийскую математическую олимпиаду/ Под редакцией А. А. Заславского, Д. А. Пермякова, А. Б. Скопенкова, М. Б. Скопенкова и А. В. Шаповалова. c. 118, задача 11
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии