WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Ортоцентр

Ортоцентр (от др.-греч. ὀρθός «прямой») — точка пересечения высот треугольника или их продолжений. Традиционно обозначается латинской буквой . В зависимости от вида треугольника ортоцентр может находиться внутри треугольника (в остроугольном), вне его (в тупоугольном) или совпадать с вершиной (в прямоугольном — совпадает с вершиной при прямом угле). Ортоцентр относятся к замечательным точкам треугольника и перечислен в энциклопедии центров треугольника Кларка Кимберлинга[en] как точка X(4).

Свойства

  • Если в четвёрке точек A, B, C, D точка D является точкой пересечения высот треугольника ABC, то и любая из четырёх точек является ортоцентром треугольника, образованного тремя остальными точками. Такую четвёрку иногда называют ортоцентрической системой точек.
    • Более того, при любом разбиении множества ортоцентрической системы точек {A, B, C, D} на две пары, например, {B, C} и {A, D} или при любом другом подобном разбиении, всегда перпендикулярны образующиеся два отрезка прямых с концами в данных точках множеств (в нашем случае BC перпендикулярно AD) независимо от выбора этих двух пар.
    • Радиусы окружностей, проходящих через любые три точки ортоцентрической системы, равны (следствие теоремы Гамильтона для окружности Эйлера). Их часто называют окружностями Джонсона
    • Последнее утверждение можно сформулировать так: Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника, имеющих равные радиусы описанных окружностей (следствие теоремы Гамильтона для окружности Эйлера). При этом одинаковый радиус этих трех окружностей равен радиусу окружности, описанной около исходного остроугольного треугольника.
Точки, симметричные ортоцентру относительно сторон, лежат на описанной окружности.
  • Ортоцентр лежит на одной прямой с центроидом, центром описанной окружности и центром окружности девяти точек (см. прямая Эйлера).
  • Ортоцентр остроугольного треугольника является центром окружности, вписанной в его ортотреугольник.
  • Центр описанной около треугольника окружности служит ортоцентром треугольника с вершинами в серединах сторон данного треугольника. Последний треугольник называют дополнительным треугольником по отношению к первому треугольнику.
  • Последнее свойство можно сформулировать так: Центр описанной около треугольника окружности служит ортоцентром дополнительного треугольника.
  • Точки, симметричные ортоцентру треугольника относительно его сторон, лежат на описанной окружности (см. рисунок)[1].
  • Точки, симметричные ортоцентру треугольника относительно середин сторон, также лежат на описанной окружности и совпадают с точками, диаметрально противоположными соответствующим вершинам.
  • Если  — центр описанной окружности , то .
    • [2][3]:p. 449, где  — радиус описанной окружности;  — длины сторон треугольника;  — внутренние углы треугольника.
  • При изогональном сопряжении ортоцентр переходит в центр описанной окружности.
  • Любой отрезок, проведенный из ортоцентра до пересечения с описанной окружностью, всегда делится окружностью Эйлера пополам. Это следует из того, что ортоцентр есть центр гомотетии этих двух окружностей с коэффициентом .
  • Четыре попарно пересекающиеся прямые, никакие три из которых не проходят через одну точку (четырёхсторонник), при пересечении образуют четыре треугольника. Их ортоцентры лежат на одной прямой (на прямой Обера).
  • Если считать, что ортоцентр треугольника делит первую высоту на части длиной: u и v, вторую высоту на части длиной: w и x, третью высоту на части длиной: y и z, тогда uv = wx = yz[4][5].
  • Цепочка уравнений в последнем пункте: uv = wx = yz,- по сути означает, что три пары отрезков, на которые ортоцентр разделяет три высоты остроугольного треугольника, подчиняются правилу хорд, пересекающихся внутри окружности, например: uv = wx. Отсюда автоматически следует то, что через четыре конца любых двух высот остроугольного треугольника всегда можно провести окружность (высоты в ней будут пересекающимися хордами). Оказывается, это утверждение сохраняет силу и для тупоугольного, и прямоугольного треугольников.
  • Расстояние от стороны до центра описанной окружности равно половине расстояния от противоположной ей вершины до ортоцентра[6][7].
  • Сумма квадратов расстояний от вершин до ортоцентра плюс сумма квадратов сторон равна двенадцати квадратам радиуса описанной окружности[8].
  • Три основания высот остроугольного треугольника или три проекции ортоцентра на стороны треугольника образуют ортотреугольник.
Ортоцентрическая ось (Orthic axis) — трилинейная поляра ортоцентра
  • Трилинейной полярой ортоцентра является ортоцентрическая ось DEF (Orthic axis) (см. рис.)

где  — расстояния от центра описанной окружности соответственно до сторон треугольника,  — расстояния от ортоцентра соответственно до вершин треугольника.

Расстояние от центра описанной окружности до стороны равно:

расстояние от ортоцентра до вершины равно:

См. также

Примечания

  1. Honsberger, 1995, p. 18.
  2. Marie-Nicole Gras, «Distances between the circumcenter of the extouch triangle and the classical centers», Forum Geometricorum 14 (2014), 51-61. http://forumgeom.fau.edu/FG2014volume14/FG201405index.html
  3. Smith, Geoff, and Leversha, Gerry, «Euler and triangle geometry», Mathematical Gazette 91, November 2007, 436—452.
  4. Altshiller-Court, 2007, p. 94.
  5. Honsberger, 1995, p. 20.
  6. Altshiller-Court, 2007, p. 99.
  7. Honsberger, 1995, p. 17, 23.
  8. Altshiller-Court, 2007, p. 102.
  9. Зетель С. И. Новая геометрия треугольника. Пособие для учителей. 2-е издание. М.: Учпедгиз, 1962. задача на с. 120—125. параграф 57, с.73.

Литература

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии