Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями[1]. Чаще всего предполагается, что высказывания могут быть только истинными или ложными, то есть используется так называемая бинарная или двоичная логика, в отличие от, например, троичной логики.
Определение
Базовыми элементами, которыми оперирует алгебра логики, являются высказывания.
Высказывания строятся над множеством {B,
,
,
, 0, 1}, где B — непустое множество, над элементами которого определены три операции:
отрицание (унарная операция),
конъюнкция (бинарная),
дизъюнкция (бинарная),
а логический ноль 0 и логическая единица 1 — константы.
Так же используются названия
Унарная операция отрицания в тексте формул оформляется либо в виде значка перед операндом (
) либо в виде черты над операндом (
), что компактнее, но в целом менее заметно.
Аксиомы
, инволютивность отрицания, закон снятия двойного отрицания
Логические операции
Простейший и наиболее широко применяемый пример такой алгебраической системы строится с использованием множества B, состоящего всего из двух элементов:
- B = { Ложь, Истина }
Как правило, в математических выражениях Ложь отождествляется с логическим нулём, а Истина — с логической единицей, а операции отрицания (НЕ), конъюнкции (И) и дизъюнкции (ИЛИ) определяются в привычном нам понимании. Легко показать, что на данном множестве B можно задать четыре унарные и шестнадцать бинарных отношений и все они могут быть получены через суперпозицию трёх выбранных операций.
Опираясь на этот математический инструментарий, логика высказываний изучает высказывания и предикаты. Также вводятся дополнительные операции, такие как эквиваленция
(«тогда и только тогда, когда»), импликация
(«следовательно»), сложение по модулю два
(«исключающее или»), штрих Шеффера
, стрелка Пирса
и другие.
Логика высказываний послужила основным математическим инструментом при создании компьютеров. Она легко преобразуется в битовую логику: истинность высказывания обозначается одним битом (0 — ЛОЖЬ, 1 — ИСТИНА); тогда операция
приобретает смысл вычитания из единицы;
— немодульного сложения; & — умножения;
— равенства;
— в буквальном смысле сложения по модулю 2 (исключающее Или — XOR);
— непревосходства суммы над 1 (то есть A
B = (A + B) <= 1).
Впоследствии булева алгебра была обобщена от логики высказываний путём введения характерных для логики высказываний аксиом. Это позволило рассматривать, например, логику кубитов, тройственную логику (когда есть три варианта истинности высказывания: «истина», «ложь» и «не определено»), комплексную логику и др.
Свойства логических операций
- Коммутативность:
.
- Идемпотентность:
.
- Ассоциативность:
.
- Дистрибутивность конъюнкций и дизъюнкции относительно дизъюнкции, конъюнкции и суммы по модулю два соответственно:
,
,
.
- Законы де Мо́ргана:
,
.
- Законы поглощения:
,
.
- Другие (1):
.
.
.
.
, инволютивность отрицания, закон снятия двойного отрицания.
- Другие (2):
.
.
.
.
- Другие (3) (Дополнение законов де Мо́ргана):
.
.
Существуют методы упрощения логической функции: например, Карта Карно, метод Куайна - Мак-Класки
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .