WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Обобщенная формула Гаусса — Бонне — интегральная формула, выражающая эйлерову характеристику замкнутого чётномерного риманова многообразия через его кривизну. Это прямое обобщение формулы Гаусса — Бонне на высшие размерности.

История

Обобщённая формула Гаусса — Бонне была доказана независимо и почти одновременно Вейлем[1] и Аллендёрфером[en][2] для замкнутых Римановых многообразий, допускающих изометричные вложения в евклидово пространство. На этот момент не было известно все ли многообразия допускают такие вложения — теорема Нэша о регулярных вложениях была доказана только в 1956 году.

В 1945 году, Черн[3] обобщил формулу на случай всех Римановых многообразий.

Формулировка

Пусть компактное ориентируемое 2n-мерное риманово многообразие без края, и — его форма кривизны. Заметим, что форма может рассматриваться как кососимметричная матрица, чьи компоненты являются 2-формами на . В частности, — это матрица над коммутативным кольцом

Поэтому можно посчитать её пфаффиан , который является 2n-формой.

Обобщенная формула Гаусса — Бонне может быть записана как

,

где обозначает эйлерову характеристику .

Примеры

  • В размерности 2 формула превращается в обычную формулу Гаусса — Бонне
  • В размерности четыре формулу можно переписать следующим удобным способом:
    ,
где — это полный тензор кривизны, тензор Риччи, и скалярная кривизна.

См. также

Примечания

  1. Weyl H. On the volume of tubes. Amer J Math, 61: 461–472 (1939)
  2. Allendoerfer C B. The Euler number of a Riemannian manifold. Amer J Math, 62: 243–248
  3. Chern, Shiing-Shen (1945), "On the curvatura integra in Riemannian manifold", Annals of Mathematics Т. 46 (4): 674–684, DOI 10.2307/1969203

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии