WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема о распределении простых чисел — теорема аналитической теории чисел, описывающая асимптотику распределения простых чисел. А именно, она утверждает, что функция распределения простых чисел (количество простых чисел на отрезке ) растёт с увеличением как , то есть:

когда

Грубо говоря, это означает, что у случайно выбранного числа от 1 до шанс оказаться простым примерно равен .

Также эта теорема может быть эквивалентным образом переформулирована для описания поведения -го простого числа : она утверждает, что

(здесь и далее запись означает, что когда аргумент функций стремится к бесконечности).

Более точно распределение простых чисел описывает функция интегрального логарифма. При справедливости гипотезы Римана верно[1]

История

Первым статистическую закономерность в расположении простых чисел подметил Гаусс. В письме Энке (1849) он сообщил, что ещё в 1792 или 1793 году, чисто эмпирически, обнаружил, что плотность простых чисел «в среднем близка к величине, обратно пропорциональной логарифму»[2]. К этому времени, основываясь на таблицах простых чисел, составленных Фелкелем и Вегой, Лежандр предположил (в 1796 году), что функция распределения простых чисел (число простых чисел, не превосходящих x) может быть приближена выражением:

где Гаусс в упомянутом письме критикует формулу Лежандра и, используя эвристические рассуждения, предлагает другую приближающую функцию — интегральный логарифм:

Однако Гаусс нигде не опубликовал эту гипотезу. Оба приближения, как Лежандра, так и Гаусса, приводят к одной и той же предполагаемой асимптотической эквивалентности функций и , указанной выше, хотя приближение Гаусса и оказывается существенно лучше, если при оценке ошибки рассматривать разность функций вместо их отношения.

В двух своих работах, 1848 и 1850 года, Чебышёв доказывает[3], что верхний M и нижний m пределы отношения

(1)

заключены в пределах , а также, что если предел отношения (1) существует, то он равен 1. Позднее (1881) Дж. Дж. Сильвестр сузил допустимый интервал для предела с 10% до 4%.

В 1859 году появляется работа Римана, рассматривающая (введённую Эйлером как функцию вещественного аргумента) ζ-функцию в комплексной области, и связывающая её поведение с распределением простых чисел. Развивая идеи этой работы, в 1896 году Адамар и Валле-Пуссен одновременно и независимо доказывают теорему о распределении простых чисел.

Наконец, в 1949 году появляется не использующее комплексный анализ доказательство ЭрдешаСельберга.

Общий ход доказательства

Переформулировка в терминах пси-функции Чебышёва

Общим начальным этапом рассуждений является переформулировка закона распределения простых чисел в терминах пси-функции Чебышёва, определяемой как

иными словами, пси-функция Чебышёва это сумма функции Мангольдта:

А именно, оказывается, что асимптотический закон распределения простых чисел равносилен тому, что

Это происходит из-за того, что логарифм «почти постоянен» на большей части отрезка , а вклад квадратов, кубов, и т. д. в сумму (*) пренебрежимо мал; поэтому практически все складываемые логарифмы примерно равны , и функция асимптотически ведёт себя так же, как .

Классические рассуждения: переход к дзета-функции Римана

Как следует из тождества Эйлера,

ряд Дирихле («производящая функция»), соответствующий функции Мангольдта, равен минус логарифмической производной дзета-функции:

Кроме того, интеграл по вертикальной прямой, находящейся справа от 0, от функции равен при и 0 при . Поэтому, умножение правой и левой части на и (аккуратное — несобственные интегралы сходится только условно!) интегрирование по вертикальной прямой по оставляет в левой части в точности сумму с . С другой стороны, применение теоремы о вычетах позволяет записать левую часть в виде суммы вычетов; каждому нулю дзета-функции соответствует полюс первого порядка её логарифмической производной, с вычетом, равным 1, а полюсу первого порядка в точке  — полюс первого порядка с вычетом, равным .

Строгая реализация этой программы позволяет получить[4] явную формула Римана (англ.)[5]:

Суммирование тут ведётся по нулям дзета-функции, лежащим в критической полосе , слагаемое отвечает полюсу в нуле, а слагаемое  — так называемым «тривиальным» нулям дзета-функции .

Отсутствие нетривиальных нулей дзета-функции вне критической полосы и влечёт за собой искомое утверждение (сумма в формуле (**) будет расти медленнее, чем ). Кроме того, гипотеза Римана влечёт за собой «оптимальную» оценку на возможные отклонения от , и, соответственно, на отклонения от .

Элементарное доказательство: завершение Эрдеша-Сельберга

Основная теорема арифметики, записывающаяся после логарифмирования как

тем самым формулируется в терминах арифметических функций и свёртки Дирихле как

где и  — арифметические функции, логарифм аргумента и тождественная единица соответственно.

Формула обращения Мёбиуса позволяет перенести в правую часть:

где  — функция Мёбиуса.

Сумма левой части (**) — искомая функция . В правой части, применение формулы гиперболы Дирихле позволяет свести сумму свёртки к сумме где  — сумма логарифма. Применение формулы Эйлера-Маклорена позволяет записать как

где  — постоянная Эйлера. Выделяя из этого выражения слагаемые, имеющие вид для подходящим образом подобранной функции F (а именно, ), и обозначая через R остаток, имеем в силу обращения Мёбиуса

Поскольку остаётся проверить, что второе слагаемое имеет вид . Применение леммы Аскера позволяет свести эту задачу к проверке утверждения где  — функция Мертенса, сумма функции Мёбиуса.

Малость сумм функции Мёбиуса на подпоследовательности следует из формулы обращения, применённой к функции .

Далее, функция Мёбиуса в алгебре арифметических функций (с мультипликативной операцией-свёрткой) удовлетворяет «дифференциальному уравнению» первого порядка

где  — дифференцирование в этой алгебре (переход к рядам Дирихле превращает его в обычное дифференцирование функции). Поэтому она удовлетворяет и уравнению второго порядка

«Усредение» этого уравнения и то, что асимптотика суммы функции оценивается лучше асимптотики сумм , позволяет оценивать отношение через средние значения такого отношения. Такая оценка вкупе с «малостью по подпоследовательности» и позволяет получить искомую оценку .

См. также

Примечания

  1. Совр. пробл. матем., 2008, выпуск 11. - с. 30-31
  2. Дербишир, 2010, с. 178-179..
  3. Ахиезер Н. И. П. Л. Чебышёв и его научное наследие.
  4. Sketch of the Riemann--von Mangoldt explicit formula
  5. Weisstein, Eric W. Explicit Formula (англ.) на сайте Wolfram MathWorld.

Литература

Классические труды

Современная литература

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии