WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Основная теорема о вычетах — мощный инструмент для вычисления интеграла мероморфной функции по замкнутому контуру. Её часто используют также для вычисления вещественных интегралов. Она является обобщением интегральной теоремы Коши и интегральной формулы Коши.

Illustration of the setting.

Формулировка: если аналитична в некоторой замкнутой односвязной области , за вычетом конечного числа особых точек , из которых ни одна не принадлежит граничному контуру , то справедлива следующая формула:

,

где  — вычет функции в точке .

Обход контура производится против часовой стрелки. Для использования теоремы в вычислении вещественных интегралов нужно продолжить интегрируемую функцию на комплексную плоскость и найти её вычеты, что обычно довольно просто сделать. После этого нужно замкнуть контур интегрирования, добавив к вещественному отрезку полуокружность, лежащую в верхней или нижней комплексной полуплоскости. После этого интеграл по этому контуру можно вычислить, используя основную теорему о вычетах. Зачастую интеграл по полуокружности можно устремить к 0, выбрав её правильным образом, после чего контурный интеграл станет равен вещественному.

Пример

Интеграл

Контур интегрирования

возникает в теории вероятностей при расчёте характеристической функции распределения Коши и не поддаётся вычислению обычными методами. Вычислим его через интеграл по контуру , указанному на рисунке ( ). Интеграл равен

Так как  — целая функция (нет сингулярностей на комплексной плоскости), то функция имеет сингулярности лишь в точках, где . Так как , это возможно лишь при или . В пределах контура лежит лишь одна из этих точек.

Вычет в равен

Тогда, по основной теореме о вычетах:

Контур можно разбить на прямую часть и кривую дугу, так что

Поэтому

Можно показать, что при :

Поэтому, если , то

Аналогичным образом, для дуги, обхватывающей точку вместо , можно показать, что при :

В итоге получаем:

(При интеграл вычислим обычными методами анализа и равен )

См. также

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии