| |||||
Внешний вид простого вещества | |||||
---|---|---|---|---|---|
Свойства атома | |||||
Название, символ, номер | Ре́ний / Rhenium (Re), 75 | ||||
Атомная масса (молярная масса) |
186,207(1)[1] а. е. м. (г/моль) | ||||
Электронная конфигурация | [Xe] 4f14 5d5 6s2 | ||||
Радиус атома | 137 пм | ||||
Химические свойства | |||||
Ковалентный радиус | 128 пм | ||||
Радиус иона | (+7e) 53 (+4e) 72 пм | ||||
Электроотрицательность | 1,9 (шкала Полинга) | ||||
Электродный потенциал | Re←Re3+ −0,30 В | ||||
Степени окисления | +7, +6, +5, +4, +3, +2, −1 | ||||
Энергия ионизации (первый электрон) |
759,1 (7,87) кДж/моль (эВ) | ||||
Термодинамические свойства простого вещества | |||||
Плотность (при н. у.) | 21,02[2] г/см³ | ||||
Температура плавления | 3459 K (3186 °C, 5767 °F)[2] | ||||
Температура кипения | 5869 K (5596 °C, 10105 °F)[2] | ||||
Уд. теплота плавления | 34 кДж/моль | ||||
Уд. теплота испарения | 704 кДж/моль | ||||
Молярная теплоёмкость | 28,43[3] Дж/(K·моль) | ||||
Молярный объём | 8,85 см³/моль | ||||
Кристаллическая решётка простого вещества | |||||
Структура решётки | Гексагональная (плотноупакованная) | ||||
Параметры решётки | a=2,761 c=4,456[4] | ||||
Отношение c/a | 1,614 | ||||
Температура Дебая | 416,00 K | ||||
Прочие характеристики | |||||
Теплопроводность | (300 K) 48,0 Вт/(м·К) | ||||
Номер CAS | 7440-15-5 |
75 | Рений |
186,207 | |
4f145d56s2 |
Ре́ний (лат. Rhenium) — химический элемент с атомным номером 75 в Периодической системе химических элементов Д. И. Менделеева, обозначается символом Re. При стандартных условиях представляет собой плотный серебристо-белый переходный металл.
Название элемента происходит от латинского Rhenus — наименование реки Рейн в Германии[5].
Существование рения было предсказано Д. И. Менделеевым («тримарганец») в 1871 году[5], по аналогии свойств элементов в группе периодической системы, однако «двимарганец» (английское «dvi-manganese») было использовано гораздо чаще[6].
Элемент открыли в 1925 году немецкие химики Ида и Вальтер Ноддак, исследуя минерал колумбит спектральным анализом[5] в лаборатории компании Siemens & Halske. Об этом было доложено на собрании немецких химиков в Нюрнберге. В следующем году группа учёных выделила из молибденита первые 2 мг рения. Относительно чистый рений удалось получить только в 1928 году. Для получения 1 г рения требовалось переработать более 600 кг норвежского молибденита.
Первое промышленное производство рения было организовано в Германии в 1930-х годах[7]. Мощность установки составляла 120 кг в год, что полностью удовлетворяло мировую потребность в этом металле. В 1943 году в США после переработки молибденовых концентратов были получены первые 4,5 кг рения.
Рений стал последним открытым элементом, у которого известен стабильный изотоп. Все элементы, которые были открыты позднее рения (в том числе и полученные искусственно), не имели стабильных изотопов.
Мировая добыча рения в 2006 году составила около 40 тонн. Крупнейшим производителем является чилийская компания Molymet[8]. Производство рения стабильно растёт и в 2008 году составило уже 57 тонн[7].
По природным запасам рения на первом месте в мире стоит Чили[9], на втором месте — США, а на третьем — Россия. Крупными запасами рения обладает современный Казахстан (месторождение вблизи г. Жезказган), бывший основным источником добычи Re в СССР. Запасы рения в виде рениита на острове Итуруп оцениваются в 10—15 тонн, в виде вулканических газов — до 20 тонн в год[10]. В России гидрогенные полиэлементные месторождения (месторождения зон пластового окисления) обладают наибольшим ресурсным потенциалом, превышая потенциал медно-молибденовых руд медно-порфировых месторождений (основной источник рения в мире). Суммарные прогнозные ресурсы рения по месторождениям этого типа на территории РФ оцениваются 2900 т, что составляет 76 % ресурсов Re страны. Большая часть (82 %) этих ресурсов находится в Подмосковной провинции, приуроченной к Подмосковному буроугольному бассейну, где наиболее изученным рениеносным объектом является Брикетно-Желтухинское месторождение в Рязанской области[11].
Общие мировые запасы рения (без учёта гидрогенных полиэлементных месторождений) составляют около 13 000 тонн, в том числе 3500 тонн в молибденовом сырье и 9500 тонн — в медном. При перспективном уровне потребления рения в количестве 40—50 тонн в год человечеству этого металла может хватить ещё на 250—300 лет. (Приведённое число носит оценочный характер без учёта степени повторного использования металла.) В практическом отношении важнейшими сырьевыми источниками получения первичного рения в промышленном масштабе остаются молибденовые и медные сульфидные концентраты. Содержание рения в них может доходить до 0,002—0,005 % по массе[5]. В общем балансе производства рения в мире на них приходится более 80 %. Остальное в основном приходится на вторичное сырьё[12].
В последние четверть века внимание исследователей привлекает высокотемпературная редкометалльная парогазовая система вулкана Кудрявый на о. Итуруп Сахалинской области России — первое в мире открытое месторождение рения, представленное фумарольным полем с действующими источниками глубинных флюидов[13]. Доказана возможность извлечения рения и других редких металлов из фумарольных газов вулкана; сделан обзор разработанных и запатентованных технологий извлечения ReS2 из высокотемпературных вулканических газов. Описан состав первого собственного минерала рения — рениита. Вынос металлов вулканическими газами может достигать 20-36 т/год. Сделан вывод о целесообразности извлечения рения, индия, германия и других металлов из этого единственного в мире месторождения, а фумарольные парогазовые выбросы вулкана можно рассматривать как новый тип уникального комплексного минерального сырья. Утверждается, что извлеченный рений может полностью удовлетворить потребности России и исключить зависимость её промышленности от импорта. Получать рений в промышленных масштабах планируется в 2020 году. Риски вложений в производство редкометалльного концентрата из газов экспертами[кем?] считаются оправданными. Так же, источником рения является повторное его извлечение из лома материалов его содержащих.
Рений — один из редчайших элементов земной коры. Его содержание в земной коре оценивается в 7⋅10-8 по массе[3]. По геохимическим свойствам он схож со своими гораздо более распространёнными соседями по периодической системе — молибденом и вольфрамом. Поэтому в виде малых примесей он входит в минералы этих элементов. Основным источником рения служат молибденовые руды некоторых месторождений, где его извлекают как попутный компонент.
Рений встречается в виде редкого минерала джезказганита (CuReS4), найденного вблизи казахстанского города Джезказган (каз. Жезқазған). Кроме того, в качестве примеси рений входит в колумбит, колчедан[14], а также в циркон и минералы редкоземельных элементов[3].
О чрезвычайной рассеянности рения говорит тот факт, что в мире известно только одно экономически выгодное месторождение рения. Оно находится в России: запасы в нём составляют около 10—15 тонн. Это месторождение было открыто в 1992 году на вулкане Кудрявый, остров Итуруп, Курильские острова[15]. Рений находится здесь в форме минерала рениит ReS2, со структурой, аналогичной молибдениту. Месторождение[16] в кальдере на вершине вулкана представлено фумарольным полем размерами ~50×20 м с постоянно действующими источниками высокотемпературных глубинных флюидов — фумаролами. Это означает, что месторождение активно формируется по сегодняшний день: по разным оценкам, с газами в атмосферу уходит от 10 до 37 тонн рения в год.
Ещё один минерал, содержащий рений, — таркианит (Cu,Fe)(Re,Mo)4S8 (53,61 % Re) — был обнаружен в концентрате из месторождения Хитура в Финляндии[17].
Рений — блестящий серебристо-белый металл. Порошок металла — чёрного или тёмно-серого цвета в зависимости от дисперсности. Это один из наиболее плотных и твёрдых металлов (плотность — 21,02 г/см³). Температура плавления — 3459 K (3186 °C)[2]. Кипит при 5869 K (5596 °C)[2]. Парамагнитен[5].
Кристаллическая решётка гексагональная (а = 0,2760 нм, с = 0,4458 нм)[3] (а = 0,2761 нм, с = 0,4456 нм)[18].
По ряду физических свойств рений приближается к тугоплавким металлам VI группы (молибден, вольфрам), а также к металлам платиновой группы. По температуре плавления рений занимает второе место среди металлов, уступая лишь вольфраму, а по плотности — четвёртое (после осмия, иридия и платины). По температуре кипения стоит на первом месте среди химических элементов (5869 К по сравнению с 5828 К у вольфрама)[2]. Чистый металл пластичен при комнатной температуре, но вследствие высокого модуля упругости после обработки твёрдость рения сильно возрастает из-за наклёпа. Для восстановления пластичности его отжигают в водороде, инертном газе или вакууме. Рений выдерживает многократные нагревы и охлаждения без потери прочности. Его прочность при температуре до 1200°C выше, чем вольфрама, и значительно превосходит прочность молибдена. Удельное электросопротивление рения в четыре раза больше, чем у вольфрама и молибдена[12].
Компактный рений устойчив на воздухе при обычных температурах. При температурах выше 300 °C наблюдается окисление металла, интенсивно окисление идёт при температурах выше 600 °C. Рений более устойчив к окислению, чем вольфрам, не реагирует непосредственно с азотом и водородом; порошок рения лишь адсорбирует водород. При нагревании рений взаимодействует с фтором, хлором и бромом. Рений почти не растворим в соляной и плавиковой кислотах и лишь слабо реагирует с серной кислотой даже при нагревании, но легко растворяется в азотной кислоте. Со ртутью рений образует амальгаму[19].
Рений взаимодействует с водными растворами пероксида водорода с образованием рениевой кислоты. Рений — единственный из тугоплавких металлов не образует карбидов.
Из-за низкой доступности и высокого спроса рений является одним из самых дорогих металлов. Цена на него сильно зависит от чистоты металла, 1 кг рения стоит от 1000 до 10 000 долларов[20][21].
Рений получают при переработке сырья с очень низким содержанием целевого компонента (в основном это медное и молибденовое сульфидное сырьё).
Переработка сульфидного ренийсодержащего медного и молибденового сырья основана на пирометаллургических процессах (плавка, конвертирование, окислительный обжиг). В условиях высоких температур рений возгоняется в виде высшего оксида Re2O7, который затем задерживается в системах пылегазоулавливания.
В случае неполной возгонки рения при обжиге молибденитовых концентратов часть его остаётся в огарке и затем переходит в аммиачные или содовые растворы выщелачивания огарков (NH4ReO4), которые позже восстанавливают водородом:
Полученный порошок рения методами порошковой металлургии превращают в слитки металла.
Таким образом, источниками получения рения при переработке молибденитовых концентратов могут служить сернокислотные растворы мокрых систем пылеулавливания и маточные растворы после гидрометаллургической переработки огарков.
При плавке медных концентратов с газами уносится 56—60 % рения. Невозогнавшийся рений целиком переходит в штейн. При конвертировании последнего содержащийся в нём рений удаляется с газами. Если печные и конверторные газы используют для производства серной кислоты, то рений концентрируется в промывной циркуляционной серной кислоте электрофильтров в виде рениевой кислоты. Таким образом, промывная серная кислота служит основным источником получения рения при переработке медных концентратов.
Основные методы выделения из растворов и очистки рения — экстракционные и сорбционные[12].
После возгонки и очистки раствора итоговый выход из руды составляет 65—85 %. Ввиду столь низкой доли выделения дорогого металла ведутся поиски альтернативных способов извлечения из руды (что применимо ко всем рассеянным металлам). Одним из современных методов является извлечение нанофракций в водный, а не кислотный или щелочной раствор. Таким образом снижается предел обнаружения ряда химических элементов на 2—3 порядка, то есть можно фиксировать значительно меньшие концентрации[22].
Важнейшие свойства рения, определяющие его применение — это очень высокая температура плавления, устойчивость к химическим реагентам, каталитическая активность (в этом он близок к платиноидам). Тем не менее, рений является дорогим и редким металлом, поэтому его использование ограничено теми случаями, когда они дают исключительные преимущества перед использованием других металлов.
До открытия платинорениевых катализаторов риформинга основной областью применения рения были жаропрочные сплавы[23]. Сплавы рения с молибденом, вольфрамом и другими металлами используются при создании деталей ракетной техники и сверхзвуковой авиации. Сплавы никеля и рения используются для изготовления камер сгорания, лопаток турбин и выхлопных сопел реактивных двигателей. Эти сплавы содержат до 6 % рения, что делает строительство реактивных двигателей крупнейшим потребителем рения. В частности, монокристаллические никелевые ренийсодержащие сплавы, обладающие повышенной жаропрочностью, используются для изготовления лопаток газотурбинных двигателей[24]. Рений имеет критическое военно-стратегическое значение ввиду его использования при изготовлении высокопроизводительных военных реактивных и ракетных двигателей[25].
Вольфрам-рениевые термопары позволяют измерять температуры до 2200 °C. Как легирующую присадку рений вводят в сплавы на основе никеля, хрома и титана. Промотирование рением платиновых металлов увеличивает износоустойчивость последних. Из подобных сплавов делают наконечники перьев автоматических ручек, фильеры для искусственного волокна. Также, рений используют в сплавах для изготовления деталей точных приборов, например, пружин. Рений применяют для изготовления нитей накала в масс-спектрометрах и ионных манометрах, и катодов. В этих случаях также используют вольфрам, покрытый рением. Рений химически стоек, поэтому его применяют для создания покрытий, предохраняющих металлы от действия кислот, щелочей, морской воды и сернистых соединений.
С момента открытия платинорениевых катализаторов риформинга (1968[26]) рений начали активно использовать для промышленного производства таких катализаторов. Это позволило повысить эффективность производства высокооктановых компонентов бензина, используемых для получения товарного бензина, не требующего добавки тетраэтилсвинца. Использование рения в нефтепереработке в разы повысило мировой спрос на него.
Кроме того, из рения делают самоочищающиеся электрические контакты. При замыкании и разрыве цепи всегда происходит электрический разряд, в результате чего металл контакта окисляется. Точно так же окисляется и рений, но его оксид Re2O7 летуч при относительно низких температурах (температура кипения — всего +362,4 °C), и при разрядах он испаряется с поверхности контакта, поэтому рениевые контакты служат очень долго.
Рений не участвует в биохимических процессах и не играет биологической роли[27].
Природный рений состоит из двух изотопов: 185Re (37,07 %) и 187Re (62,93 %)[5]. Первый из них стабилен, а второй испытывает электронный бета-распад с периодом полураспада 43,5 млрд лет. Этот изотоп используется для определения абсолютного геологического возраста минералов, горных пород, руд и метеоритов с помощью рений-осмиевого метода) по измерению в минералах, содержащих рений, относительных концентраций изотопов 187Re и 187Os — стабильного изотопа, являющегося продуктом распада 187Re.
Распад 187Re замечателен также тем, что энергия этого распада является наименьшей (2,6 кэВ) среди всех известных изотопов, подверженных бета-распаду[источник не указан 566 дней].
![]() |
Портал «Химия» |
---|---|
![]() |
Рений в Викисловаре |
![]() |
Рений на Викискладе |
![]() |
Проект «Химия» |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .