WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
67 ДиспрозийГольмийЭрбий
Ho

Es
ВодородГелийЛитийБериллийБорУглеродАзотКислородФторНеонНатрийМагнийАлюминийКремнийФосфорСераХлорАргонКалийКальцийСкандийТитанВанадийХромМарганецЖелезоКобальтНикельМедьЦинкГаллийГерманийМышьякСеленБромКриптонРубидийСтронцийИттрийЦирконийНиобийМолибденТехнецийРутенийРодийПалладийСереброКадмийИндийОловоСурьмаТеллурИодКсенонЦезийБарийЛантанЦерийПразеодимНеодимПрометийСамарийЕвропийГадолинийТербийДиспрозийГольмийЭрбийТулийИттербийЛютецийГафнийТанталВольфрамРенийОсмийИридийПлатинаЗолотоРтутьТаллийСвинецВисмутПолонийАстатРадонФранцийРадийАктинийТорийПротактинийУранНептунийПлутонийАмерицийКюрийБерклийКалифорнийЭйнштейнийФермийМенделевийНобелийЛоуренсийРезерфордийДубнийСиборгийБорийХассийМейтнерийДармштадтийРентгенийКоперницийНихонийФлеровийМосковийЛиверморийТеннессинОганесонПериодическая система элементов
67Ho
Внешний вид простого вещества

Сравнительно мягкий, ковкий, глянцевитый серебристый металл
Свойства атома
Название, символ, номер Гольмий / Holmium (Ho), 67
Атомная масса
(молярная масса)
164,93032(2)[1] а. е. м. (г/моль)
Электронная конфигурация [Xe] 4f11 6s2
Радиус атома 179 пм
Химические свойства
Ковалентный радиус 158 пм
Радиус иона (+3e) 89,4 пм
Электроотрицательность 1,23 (шкала Полинга)
Электродный потенциал Ho←Ho3+ −2,33 В
Степени окисления 3
Энергия ионизации
(первый электрон)
 574,0 (5,95) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 8,795 г/см³
Температура плавления 1747 K
Температура кипения 2968 K
Уд. теплота испарения 301 кДж/моль
Молярная теплоёмкость 27,15[2] Дж/(K·моль)
Молярный объём 18,7 см³/моль
Кристаллическая решётка простого вещества
Структура решётки гексагональная
Параметры решётки a=3,577 c=5,616 Å
Отношение c/a 1,570
Прочие характеристики
Теплопроводность (300 K) (16,2) Вт/(м·К)
Номер CAS 7440-60-0
67
Гольмий
164,9303
4f116s2

Го́льмий — химический элемент, относящийся к группе лантаноидов.

История

В 1879 году швейцарский химик и физик Жак-Луи Соре методом спектрального анализа обнаружил в «эрбиевой земле» новый элемент[3].

Происхождение названия

Название элементу дал шведский химик П. Т. Клеве в честь Стокгольма (его старинное латинское название Holmia), так как минерал, из которого сам Клёве в 1879 году выделил оксид нового элемента, был найден близ столицы Швеции.

Нахождение в природе

Содержание гольмия в земной коре составляет 1,3⋅10−4 % по массе, в морской воде 2,2⋅10−7 %. Вместе с другими редкоземельными элементами содержится в минералах монаците, бастенезите, эвксените, апатите и гадолините.

Среди космических объектов аномально высоким содержанием гольмия отличается звезда Пшибыльского.

Месторождения

Гольмий входит в состав лантаноидов, которые часто встречаются в США, Казахстане, России, Украине, Австралии, Бразилии, Индии, Скандинавии.

Получение

Получают восстановлением фторида гольмия HoF3 кальцием.

Цены

Цены на оксид гольмия чистотой 99—99,99 % в 2006 году составили около 120—191 долларов за 1 кг.

Химические свойства

Медленно окисляется на воздухе, образуя Ho2O3. Взаимодействует с кислотами (кроме HF), образуя соли Ho3+. Реагирует при нагревании с хлором, бромом, азотом и водородом. Устойчив к действию фтора.

Применение

Гольмий — моноизотопный элемент (гольмий-165).

Получение сверхсильных магнитных полей: гольмий сверхвысокой чистоты применяется для изготовления полюсных наконечников сверхпроводящих магнитов для получения сверхсильных магнитных полей. В этом же отношении важное значение играет сплав гольмий-эрбий.

Изотопы: радиоактивный изотоп гольмия — гольмий-166 находит применение в аналитической химии в качестве радиоактивного индикатора.

Металлургия: добавлением гольмия к сплавам алюминия резко уменьшают газосодержание в них.

Лазерные материалы: ионы гольмия служат для генерации лазерного излучения в инфракрасной области спектра, длина волны — 2,05 мк.

Термоэлектрические материалы: термоЭДС монотеллурида гольмия составляет 40 мкВ/К.

Ядерная энергетика: борат гольмия применяется в атомной технике.

Технологии: атом гольмия — первый атом, на который была записана информация, которая при считывании могла быть расшифрована 4 способами (00, 01, 10, 11)

(То есть 2 атома гольмия, находящиеся рядом, соответственно Ho(A) и Ho(B) могли при считывании представить 4 варианта по флуктуации спинов: A↑B↑, A↑B↓, A↓B↑, A↓B↓.)

IBM Research[en] нашло применение атома гольмия следующим образом: атом гольмия устанавливается на подложку из оксида магния. В этом случае гольмий приобретает свойства магнитной бистабильности, то есть имеет два стабильных магнитных состояния с различными спинами.

Исследователи использовали сканирующий туннельный микроскоп (СТМ) и прикладывают к атому напряжение в 150 мВ при 10 мкА. Такой большой приток электронов заставляет атом гольмия изменить магнитное спиновое состояние. Поскольку каждое из двух состояний имеет различные профили проводимости, игла СТМ способна определить, в котором из них находится атом. Это выполняется путем приложения меньшего напряжения (75 мВ) и измерения сопротивления.

Дабы убедиться, что атом гольмия менял своё магнитное состояние и это не было побочным эффектом работы СТМ, учёные разместили рядом атом железа, реагирующий на магнитные колебания. Это позволило подтвердить, что во время эксперимента удалось на длительное время сохранить магнитное состояние атома[4][5].

Таким образом, этот атом стал первым, на который была записана информация в 1 бит[6][7][8][9].

Примечания

  1. Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. Vol. 85, no. 5. P. 1047-1078. DOI:10.1351/PAC-REP-13-03-02.
  2. Химическая энциклопедия: в 5 т. / Редкол.:Кнунянц И. Л. (гл. ред.). М.: Советская энциклопедия, 1988. — Т. 1. — С. 590. — 623 с. 100 000 экз.
  3. Горбов А. И. Гольмий // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). СПб., 1890—1907.
  4. «Меньше некуда»: учёные из IBM сохранили информацию в атоме, Пикабу. Проверено 10 марта 2017.
  5. Владимир Королев. Магнитная запись информации достигла предельной плотности. nplus1.ru. Проверено 10 марта 2017.
  6. Физики из Дельфтского технологического университета создали атомное хранилище данных (рус.). Проверено 10 марта 2017.
  7. F. E. Kalff, M. P. Rebergen, E. Fahrenfort, J. Girovsky, R. Toskovic. A kilobyte rewritable atomic memory (англ.) // Nature Nanotechnology. — 2016-11-01. Vol. 11, iss. 11. P. 926–929. ISSN 1748-3387. DOI:10.1038/nnano.2016.131.
  8. «Меньше некуда»: ученые из IBM сохранили информацию в атоме - PCNEWS.RU. pcnews.ru. Проверено 10 марта 2017.
  9. IBM Scientists Achieve Storage Memory Breakthrough (англ.). www-03.ibm.com (17 May 2016). Проверено 10 марта 2017.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии