WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Пфаффианом кососимметричной матрицы называется некоторый многочлен от её элементов, квадрат которого равен определителю этой матрицы. Как и определитель, пфаффиан является ненулевым только для кососимметричных матриц размера , и в этом случае его степень равна n.

Примеры

Определение

Пусть обозначает множество всех разбиений множества на неупорядоченные пары (всего существует таких разбиений). Разбиение может быть записано

где и . Пусть

обозначает соответствующую перестановку, а знак перестановки . Нетрудно видеть, что не зависит от выбора .

Пусть обозначает кососимметричную матрицу. Для разбиения определим

Теперь можно определить пфаффиан матрицы A как

Пфаффиан кососимметричной матрицы размера для нечётного n равен нулю по определению.

Альтернативное определение

Для кососимметричной матрицы рассмотрим бивектор:

где есть стандартный базис в . Тогда пфаффиан определяется следующим уравнением:

где обозначает внешнее произведение n копий .

Свойства

Для кососимметричной матрицы и для произвольной матрицы :

  • Для блок-диагональной матрицы
  • Для произвольной матрицы :

История

Термин «пфаффиан» был введён Кэли[1] и назван в честь немецкого математика Иоганна Фридриха Пфаффа.

Примечания

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии