Здесь — целое неотрицательное число, называемое степенью многочлена, а — элементы алгебры над умножение которых задаётся правилами:
Такое определение позволяет умножать многочлены формально, не заботясь о том, что разные степени одного и того же элемента конечного поля могут совпадать[1][2].
Число называется степенью полинома и обозначается как [2].
Если , то полином называется нормированным (приведённым)[2]. Полином всегда можно нормировать делением его на коэффициент при старшей степени.
Сумма и произведение полиномов определены обычным образом, а операции с коэффициентами осуществляются в поле.
Для двух полиномов и всегда найдутся полиномы и над полем , что будет выполняться соотношение
Если степень строго меньше степени , то такое соотношение называется представлением полинома в виде частного и остатка от деления на , причем такое представление единственно[3]. Ясно, что делится без остатка на , что записывается как [4].
Если , то полином называется делителем полинома [5].
Полином является неприводимым над полем , если он не имеет нетривиальных делителей (степени большей 0 и меньшей )[5][6].
Минимальным многочленом (минимальной функцией) для элемента из расширенного поля называется такой нормированный многочлен над минимальной степени, что [7][8].
Корнем многочлена называется всякий элемент поля, значение этого многочлена на котором равно нулю.
Сопряженными называются элементы поля, являющиеся корнями одного и того же неприводимого многочлена[9].
Корни многочлена
Полином степени m имеет ровно m корней (с учётом кратности), принадлежащих некоторому расширенному полю . Если , где — простое, то . Исходя из свойств конечных полей, любой элемент поля является корнем двучлена :
Таким образом, корни многочлена также являются корнями двучлена [10].
Теорема 2. Сопряженные элементы поля Галуа имеют один и тот же порядок[9].
Циклотомический класс
Следствием Теоремы 1 может быть тот факт, что, если — корень полинома над полем , то и являются его корнями.
Определение:циклотомическим классом над полем , порождённым некоторым элементом называется множество всех различных элементов , являющихся -ми степенями [12].
Если — примитивный элемент[13] (такой элемент, что и при ) поля , то циклотомический класс над полем будет иметь ровно элементов.
Следует отметить, что любой элемент из циклотомического класса может порождать этот и только этот класс, а, следовательно, и принадлежать только ему.
Примеры циклотомических классов
Пример 1. Пусть , и — примитивный элемент поля , то есть и при . Учитывая также, что , можно получить разложение всех ненулевых элементов поля на три циклотомических класса над полем :
Пример 2. Аналогично можно построить классы на поле над полем , то есть . Пусть — примитивный элемент поля , значит .
Связь с корнями полиномов
Следующая Теорема устанавливает связь между циклотомическими классами и разложением полинома на неприводимые полиномы над полем .
Теорема 3. Пусть циклотомический класс, порожденный элементом и полином имеет в качестве своих корней элементы этого циклотомического класса, то есть
Тогда коэффициенты полинома лежат в поле , а сам полином является неприводимым над этим полем.
Можно установить такое следствие из Теоремы 3. Из свойства конечных полей, говорящего о том, что все ненулевые элементы поля являются корнями многочлена , можно заключить, что многочлен можно разложить на неприводимые над полем многочлены , каждый из которых соответствует своему циклотомическому классу[14].
Виды многочленов
Примитивные многочлены
Определение. Порядок корней неприводимого многочлена называется показателем, к которому этот многочлен принадлежит. Неприводимый многочлен называется примитивным, если все его корни являются порождающими элементами мультипликативной группы поля[15].
Все корни примитивного многочлена имеют порядок, равный порядку мультипликативной группы расширенного поля , то есть [11].
Круговые многочлены
Пусть есть порождающий элемент мультипликативной группы поля , и её порядок равен , то есть . Пусть все элементы порядка являются корнями многочлена . Тогда такой многочлен называется круговым и верно равенство[16]:
Многочлены Жегалкина
Среди многочленов над конечными полями особо выделяют многочлены Жегалкина. Они представляют собой полиномы многих переменных над полем [17].
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии