Задача о пушечных ядрах (англ. cannonball problem) — задача о нахождении числа пушечных ядер, которые можно уложить и в один слой в форме квадрата, и в форме пирамиды с квадратом в основании, то есть о нахождении квадратных чисел, также являющихся квадратными пирамидальными числами. Нахождение этого числа сводится к решению диофантова уравнения или . Уравнение имеет два решения: и , то есть одно пушечное ядро, и и , то есть 4900 пушечных ядер.
Вопросы укладки пушечных ядер интересовали уже сэра Уолтера Рэли и его современника Томаса Хэрриота[1], однако в приведённой выше форме она была сформулирована в 1875 году Эдуаром Люка, предположившим, что кроме и других решений не существует[2]. Частичные доказательства были предложены Море-Бланом (1876)[3] и самим Люка (1877)[4]. Первое полное доказательство было предложено Уотсоном (1918)[5]; доказательство использовало эллиптические функции[6]. Ещё одно доказательство было предложено Люнггреном (1952)[7] с использованием уравнения Пелля[8]. Доказательства с использованием только элементарных функций были предложены Ма (1985)[9] и Энглином (1990)[10][6].
Доказательство Уотсона[5] основано на наблюдении, что из трёх чисел , и одно должно делиться на 3; и либо , либо должно быть чётным; и что все остальные множители должны быть квадратами. Тем самым возможны шесть вариантов:
Однако, поскольку при делении на 3 может иметь только остатки 0 или 2, первый вариант приводит к противоречию. Аналогичным образом можно исключить второй, третий и четвёртый варианты.
Пятый вариант приводит к решению . Действительно, возможно только при нечётном , и , то есть, существуют целые числа и , такие что или . Однако, приводит к противоречию . Следовательно, , то есть, и . Как показано Жероно, и являются единственными решениями последней системы уравнений[11]. Случай невозможен, так как ; случай приводит к . Альтернативное доказательство единственности решения в этом случае использует то, что единственными решениями являются и приведено в главе 6.8.2 книги Коэна[12].
Доказательство отсутствия нетривиальных решений в шестом варианте требует применения эллиптических функций. Действительно, шестой вариант можно привести к виду . Вместо этих уравнений Уотсон рассматривает более общий случай и показывает, что решения этих уравнений должны удовлетворять , где — неотрицательное целое число, задана , , , а , , и — эллиптические функции Якоби. Далее Уотсон доказывает, что численно равно единице, только если , то есть , и единственное возможное в этом случае решение .
Доказательство единственности приведённых выше решений, предложенное Ма, основывается на последовательном доказательстве следующих утверждений[12]:
Подробности доказательства приведены в главе 6.8.2 книги Коэна[12].
За исключением тривиального случая не существует числа пушечных ядер, которые бы можно было уложить в виде пирамиды с квадратом в основании, и которое бы при этом одновременно являлось кубом, четвёртой или пятой степенью натурального числа[13]. Более того, это же справедливо для укладки ядер в виде правильного тетраэдра[13].
Другим обобщением задачи является вопрос о нахождении числа ядер, которые можно уложить в форме квадрата и усечённой пирамиды с квадратом в основании. То есть ищут последовательных квадратов (не обязательно начиная с 1), сумма которых является квадратом. Известно, что множество таких бесконечно, имеет асимптотическую плотность ноль и для , не являющихся квадратами, существует бесконечно много решений[8]. Число элементов множества , не превышающих , оценивается как . Первые элементы множества и соответствующие наименьшие значения , такие что является квадратом, приведены в следующей таблице[8]:
n | 2 | 11 | 23 | 24 | 26 | 33 | 47 | 49 | 50 | 59 |
---|---|---|---|---|---|---|---|---|---|---|
a | 3 | 18 | 7 | 1 | 25 | 7 | 539 | 25 | 7 | 22 |
Для и решением является пифагорова тройка . Для и решением является приведённое выше решение задачи об укладке пушечных ядер. Последовательность элементов множества — последовательность A001032 в OEIS[14].
Ещё одно обобщение задачи было рассмотрено Канеко и Тачибаной[15]: вместо вопроса о равенстве суммы первых квадратных чисел и другого квадратного числа, они рассмотрели вопрос о равенстве суммы первых многоугольных чисел и другого многоугольного числа и показали, что для любого существует бесконечно много последовательностей первых -угольных чисел, таких что их сумма равна другому многоугольному числу, и что для любого существует бесконечное число -угольных чисел, представимых в виде суммы последовательностей первых многоугольных чисел. Более того, Канеко и Тачибана установили, что для любого натурального выполняются следующие отношения:
где — -ое -угольное число, а — -ое -угольное пирамидальное число, то есть, сумма первых -угольных чисел[15].
Нетривиальное решение приводит к построению решётки Лича (которая, в свою очередь, связана с различными областями математики и теоретической физики — теория бозонных струн, монстр). Это делается с помощью чётной унимодулярной решётки в 25+1-мерном псевдоевклидовом пространстве. Рассмотрим вектор этой решётки . Поскольку и — решение задачи об укладке пушечных ядер, этот вектор — светоподобный, , откуда, в частности, следует, что он принадлежит собственному ортогональному дополнению . Согласно Конвею[16][17], вектор позволяет построить решётку Лича
Эта статья входит в число добротных статей русскоязычного раздела Википедии. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .