WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Шестая проблема Гильберта — одна из проблем, поставленных Давидом Гильбертом в его докладе[1][2] на II Международном Конгрессе математиков в Париже в 1900 году. Эта проблема посвящена вопросу аксиоматизации теоретической физики. Проблему можно считать частично решенной или некорректно поставленной в зависимости от интерпретации первоначальной формулировки Гильберта.[3].

Проблема в формулировке Гильберта

Сам Гильберт считал важнейшими два вопроса.

  1. Аксиоматизацию теории вероятностей, которая является фундаментом статистической физики.
  2. Строгую теорию предельных процессов «которые ведут от атомистической точки зрения к законам движения континуума».

В 1933 году Колмогоров на базе теории меры построил аксиоматику теории вероятностей, которая сегодня является общепринятой.

В 1990—2000 годы несколькими группами математиков были получены важные результаты и по второму вопросу[4][5][6]

Современное состояние проблемы

В настоящее время наиболее общими аксиоматически построенными физическими теориями являются общая теория относительности, которая описывает гравитационное взаимодействие и квантовая механика[7] со стандартной моделью, которые описывают три остальных взаимодействия. Но поскольку квантовой теории гравитации пока не существует, то эти теории нельзя объединить. В этом смысле шестая проблема Гильберта не решена.

Примечания

  1. David Hilbert. Vortrag, gehalten auf dem internationalen Mathematiker-Kongreß zu Paris 1900 (нем.). — Текст доклада, прочитанного Гильбертом 8 августа 1900 года на II Международном конгрессе математиков в Париже. Проверено 27 августа 2009. Архивировано 8 апреля 2012 года.
  2. Перевод доклада Гильберта с немецкого — М. Г. Шестопал и А. В. Дорофеева, опубликован в книге Проблемы Гильберта / под ред. П. С. Александрова. М.: Наука, 1969. — С. 36—37. — 240 с. 10 700 экз.
  3. Corry L. David Hilbert and the axiomatization of physics (1894—1905) // Arch. Hist. Exact Sci. — 51 (1997). — no. 2. — pp. 83—198. — DOI 10.1007/BF00375141.
  4. Saint-Raymond L. Hydrodynamic limits of the Boltzmann equation // Lecture Notes in Mathematics. — vol. 1971. — Berlin: Springer-Verlag, 2009.
  5. Slemrod M. From Boltzmann to Euler: Hilbert’s 6th problem revisited // Comput. Math. Appl. — 65 (2013). — no. 10. — pp. 1497—1501. — MR 3061719. — DOI: https://dx.doi.org/10.1016/j.camwa.2012.08.016
  6. Gorban A. N., Karlin I. Hilbert’s 6th Problem: exact and approximate hydrodynamic manifolds for kinetic equations // Bull. Amer. Math. Soc. — 51 (2014). — no. 2. — 186—246. — DOI: https://dx.doi.org/10.1090/S0273-0979-2013-01439-3.
  7. Наиболее удачную математическую модель для квантовой механики построил фон Нейман на основе теории гильбертовых пространств

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии