WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Термин цоколь имеет несколько связанных значений в математике.

Цоколь группы

В контексте теории групп цоколь группы G, обозначается soc(G), — это подгруппа, генерируемая характеристически простыми подгруппами[en] группы G. Может случиться, что группа не имеет минимальной нетривиальной нормальной подгруппы (то есть любая нетривиальная нормальная подгруппа содержит другую такую подгруппу), в этом случае цоколь определяется как подгруппа, генерируемая единичным элементом. Цоколь является прямым произведением характеристически простых групп[1].

Как пример, рассмотрим циклическую группу Z12 с генератором u, которая имеет две минимальные нормальные подгруппы, одна генерируется элементом u 4 (который даёт нормальную подгруппу с 3 элементами), а другая — элементом u 6 (который даёт нормальную подгруппу с 2 элементами). Тогда цоколь группы Z12 — это группа, генерируемая элементами u 4 и u 6, которая просто генерируется элементом u 2.

Цоколь является характеристической подгруппой, а следовательно, нормальной подгруппой. Она, однако, не обязательно является транзитивно нормальной[en].

Если группа G является конечной разрешимой группой, то цоколь можно выразить в виде произведения элементарных абелевых[en] p-групп. В этом случае он просто является произведением копий Z/pZ для различных p, где некоторые p могут встречаться несколько раз.

Цоколь модуля

В контексте модуля над кольцом и теории колец цоколь модуля M над кольцом R определяется как сумма минимальных ненулевых подмодулей модуля M. Он может рассматриваться как двойственный для радикала модуля[en]. В обозначениях теории множеств

, где суммирование ведётся по всем подмодулям модуля M
Что эквивалентно,
, где пересечение ведётся по всем существенным подмодулям модуля M

Цоколь кольца R может относиться к одному из множеств в кольце. Предположим, что определён правый модуль R, soc(RR), и определён левый модуль, soc(RR). Оба эти цоколя являются идеалами колец и известно, что они не обязательно совпадают.

Цоколь алгебры Ли

В контексте алгебр Ли цоколь симметричной алгебры Ли[en] — это собственное пространство его структурных автоморфизмов, которые соответствуют собственному значению −1. (Симметричная алгебра Ли разбивается на прямую сумму её цоколя и коцоколя[en].)[3].

См. также

Примечания

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии