WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Произведение Кронекера — бинарная операция над матрицами произвольного размера, обозначается . Результатом является блочная матрица.

Произведение Кронекера не следует путать с обычным умножением матриц. Операция названа в честь немецкого математика Леопольда Кронекера.

Определение

Если A — матрица размера m×n, B — матрица размера p×q, тогда произведение Кронекера есть блочная матрица размера mp×nq

В развёрнутом виде

Если A и B представляют собой линейные преобразования V1W1 и V2W2, соответственно, то AB представляет собой тензорное произведение двух отображений, V1V2W1W2.

Пример

.

Билинейность, ассоциативность и некоммутативность

где A, B и C есть матрицы, а k — скаляр.

Если A и B квадратные матрицы, тогда A B и B A являются перестановочно подобными, то есть, P = QT.

Транспонирование

Операции транспонирования и эрмитова сопряжения можно переставлять с произведением Кронекера:

Смешанное произведение

  • Если A, B, C и D являются матрицами такого размера, что существуют произведения AC и BD, тогда
  • A B является обратимой тогда и только тогда, когда A и B являются обратимыми, и тогда

Сумма и экспонента Кронекера

  • Пусть A — матрица размера n×n, B — матрица размера m×m и  — единичная матрица размера k×k. Тогда можно определить сумму Кронекера как
  • Также справедливо

Спектр, след и определитель

  • Если A и B квадратные матрицы размера n и q соответственно. Если λ1, …, λn — собственные значения матрицы A и μ1, …, μq собственные значения матрицы B. Тогда собственными значениями A B являются

Сингулярное разложение и ранг

Ненулевые сингулярные значения матрицы B:

Тогда произведение Кронекера A B имеет rArB ненулевых сингулярных значений

  • Ранг матрицы равен количеству ненулевых сингулярных значений,

История

Произведение Кронекера названо в честь Леопольда Кронекера, несмотря даже на то, что существует мало свидетельств о том, что он был первым, кто определил и использовал эту операцию. В прошлом произведение Кронекера иногда называли матрицей Зефусса.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии