Круговое поле, или поле деления круга степени n — это поле , порождённое присоединением к полю рациональных чисел первообразного корня n-й степени из единицы . Круговое поле является подполем поля комплексных чисел.
Название поля связано с тем, что деление единичной окружности на n равных частей равносильно построению первообразного корня из единицы n-й степени на комплексной плоскости. Исследование круговых полей сыграло значительную роль в создании и развитии теории целых алгебраических чисел, теории чисел и теории Галуа.
Пример: состоит из комплексных чисел вида , где — рациональные числа.
Теорема Кронекера — Вебера: всякое абелево конечное расширение поля рациональных чисел содержится в некотором круговом поле.
![]() |
Это заготовка статьи по алгебре. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .