WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Компактификация Стоуна — Чеха (также стоун-чеховская или чех-стоунова компактификация) — максимальная компактификация вполне регулярного топологического пространства.

Компактификация Стоуна — Чеха пространства обычно обозначается как .

Компактификацию Стоуна — Чеха можно определить при помощи универсального свойства. Как и любое универсальное свойство, оно является достаточным для определения компактификации с точностью до изоморфизма, однако для доказательства существования компактификации нужно описать явную конструкцию.

История

Конструкция компактификации Стоуна — Чеха была впервые рассмотрена Тихоновым[1] в 1930 году. Более явно она была описана в 1937 году Стоуном [2] и Эдуардом Чехом[3].

Универсальное свойство

 — это компактное хаусдорфово пространство вместе с непрерывным отображением из удовлетворяющее следующему универсальному свойству: любое непрерывное отображение в компактное хаусдорфово пространство можно однозначно продолжить до непрерывного отображения такого что следующая диаграмма коммутативна:

В случае, если исходное пространство было вполне регулярным, отображение является гомеоморфизмом на образ этого отображения (то есть вложением).

Конструкция

Обозначим через множество всех непрерывных функций . Можно проверить, что отображение (тихоновский куб), определяемое равенством

,

является гомеоморфизмом на свой образ . Замыкание в и будет искомой компактификацией.

Свойства

  • Если является дискретным пространством, его компактификация — это множество ультрафильтров на решётке подмножеств наделённое топологией Стоуна. В качестве базы открытых множеств топологии Стоуна на множестве ультрафильтров можно взять множества для всевозможных

Примечания

  1. Tychonoff, A. (1930), Über die topologische Erweiterung von Räumen, — Mathematische Annalen (Springer Berlin / Heidelberg) 102: 544—561
  2. Stone, M.H. (1937), Applications of the theory of Boolean rings to general topology, — Trans. Amer. Soc. (Transactions of the American Mathematical Society, Vol. 41, No. 3) 41 (3): 375—481
  3. Čech, E. (1937), On bicompact spaces, — Ann. Math. (The Annals of Mathematics, Vol. 38, No. 4) 38 (4): 823—844

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии