Место действия этой игры — «вселенная» — это размеченная на клетки поверхность или плоскость — безграничная, ограниченная, или замкнутая (в пределе — бесконечная плоскость).
Каждая клетка на этой поверхности может находиться в двух состояниях: быть «живой» (заполненной) или быть «мёртвой» (пустой). Клетка имеет восемь соседей, окружающих её.
Распределение живых клеток в начале игры называется первым поколением. Каждое следующее поколение рассчитывается на основе предыдущего по таким правилам:
в пустой (мёртвой) клетке, рядом с которой ровно три живые клетки, зарождается жизнь;
если у живой клетки есть две или три живые соседки, то эта клетка продолжает жить; в противном случае, если соседей меньше двух или больше трёх, клетка умирает («от одиночества» или «от перенаселённости»)
Игра прекращается, если
на поле не останется ни одной «живой» клетки
конфигурация на очередном шаге в точности (без сдвигов и поворотов) повторит себя же на одном из более ранних шагов (складывается периодическая конфигурация)
при очередном шаге ни одна из клеток не меняет своего состояния (складывается стабильная конфигурация; предыдущее правило, вырожденное до одного шага назад)
Эти простые правила приводят к огромному разнообразию форм, которые могут возникнуть в игре.
Игрок не принимает прямого участия в игре, а лишь расставляет или генерирует начальную конфигурацию «живых» клеток, которые затем взаимодействуют согласно правилам уже без его участия (он является наблюдателем).
Происхождение
Джон Конвей заинтересовался проблемой, предложенной в 1940-х годах известным математиком Джоном фон Нейманом, который пытался создать гипотетическую машину, которая может воспроизводить сама себя. Джону фон Нейману удалось создать математическую модель такой машины с очень сложными правилами. Конвей попытался упростить идеи, предложенные Нейманом, и в конце концов ему удалось создать правила, которые стали правилами игры «Жизнь».
В компьютерных реализациях игры поле ограничено и (как правило) верхняя граница поля «соединена» с нижней, а левая граница — с правой, что представляет собой эмуляцию поверхности тора, но на экране поле всегда отображается в виде равномерной сетки.
Простейший алгоритм «смены поколения» последовательно просматривает все ячейки решётки и для каждой ячейки подсчитывает соседей, определяя судьбу каждой клетки (не изменится, умрёт, родится). Такой простейший алгоритм использует два двумерных массива — один для текущего поколения, второй — для следующего.
Более сложный, но и более быстрый алгоритм составляет списки клеток для просмотра в последующем поколении; клетки, которые не могут измениться, в списки не вносятся. Например, если какая-либо клетка и ни одна из её соседей не поменялись на предыдущем ходу, то эта клетка не поменяется и на текущем ходу.
Вскоре после опубликования правил было обнаружено несколько интересных шаблонов (вариантов расстановки живых клеток в первом поколении), в частности: r-пентамино и планер (glider).
Планер (glider) на квадратной решётке 10 × 10 с периодическими условиями
Некоторые такие фигуры остаются неизменными во всех последующих поколениях, состояние других периодически повторяется, в некоторых случаях со смещением всей фигуры. Существует фигура (Diehard) всего из семи живых клеток, потомки которой существуют в течение ста тридцати поколений, а затем исчезают.
Конвей первоначально предположил, что никакая начальная комбинация не может привести к неограниченному размножению и предложил премию в 50 долларов тому, кто докажет или опровергнет эту гипотезу. Приз был получен группой из Массачусетского технологического института, придумавшей неподвижную повторяющуюся фигуру, которая периодически создавала движущиеся «планеры». Таким образом, количество живых клеток могло расти неограниченно. Затем были найдены движущиеся фигуры, оставляющие за собой «мусор» из других фигур.
К настоящему времени более-менее сложилась следующая классификация фигур:
Планерное ружьё Госпера (англ.) — первая бесконечно растущая фигура
Долгожители: фигуры, которые долго меняются, прежде чем стабилизироваться[2].
Периодические фигуры: фигуры, у которых состояние повторяется через некоторое число поколений
Двигающиеся фигуры: фигуры, у которых состояние повторяется, но с некоторым смещением
Ружья: фигуры, у которых состояние повторяется, но дополнительно появляется двигающаяся фигура
Паровозы: двигающиеся фигуры, которые оставляют за собой следы в виде устойчивых или периодических фигур
Пожиратели: устойчивые фигуры, которые могут пережить столкновения с некоторыми двигающимися фигурами
Фигуры, которые при столкновении с некоторыми фигурами дублируются.
Райский сад
Пример Райского сада
Райским садом (садом Эдема) называется такое расположение клеток, у которого не может быть предыдущего поколения. Практически для любой игры, состояние клеток в которой определяется несколькими соседями на предыдущем шаге, можно доказать существование садов Эдема, но построить конкретную фигуру гораздо сложнее.
«Цифры»
С помощью простейшего «шрифта» размером 3 на 5 клеток, предложенного, по всей видимости, Эриком Анджелини в 2007 году, можно получить очень многие фигуры. Например, число 90, записанное этим шрифтом, порождает планер[3].
Влияние на развитие наук
Хотя игра состоит всего из двух простых правил, тем не менее она более сорока лет привлекает внимание учёных. Игра «Жизнь» и её модификации повлияли (в ряде случаев взаимно) на многие разделы таких точных наук, как математика, информатика, физика[4]. Это, в частности:
Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 22 сентября 2016 года.
Кроме того, многие закономерности, обнаруженные в игре, имеют свои аналогии в других, подчас совершенно «нематематических» дисциплинах. Вот список наук, теории которых имеют интересные точки соприкосновения с феноменами «Жизни»:
Кибернетика. Сама игра является удачной попыткой Конвея доказать существование простых самовоспроизводящихся систем, а также появление некоего «разума» у самовоспроизводящихся систем.
Биология. Внешнее сходство с развитием популяций примитивных организмов впечатляет.
Бактериология. Некоторые интересные вариации игры с дополнительными условиями могут с точностью повторить размножение бактерий, которые с случайной вероятностью могут мутировать (по условию модификации) и уже новый вид начинает заполнять всё пространство. Данный механизм с точностью повторяет эволюцию бактерий, которые в конце концов эволюционировали до человека.
Физиология. Рождение и смерть клеток аналогичны процессу возникновения и исчезновения нейронных импульсов, которые и формируют процесс мышления. А также аналогичны созданию импульсов в нервной системе многоклеточных организмов.
Квантовая физика. Поведение «жизненных» ячеек (рождение новых и взаимное уничтожение) во многом напоминают процессы, происходящие при столкновении элементарных частиц.
Наномеханика. Стационарные и пульсирующие колонии являются показательным примером простейших устройств, созданных на основе нанотехнологий.
Химия. Конфигурации, подобные строящимся в игре, возникают во время химических реакций на поверхности, в частности в опытах М. С. Шакаевой возникают движущиеся молекулярные конструкции аналогичные «жизненному» планеру. Также предпринимаются попытки объяснить периодические химические реакции с помощью многомерных клеточных автоматов. Самоорганизацией элементарных частиц также занимается супрамолекулярная химия.
Социология. Процессы доминации, вытеснения, поглощения, сосуществования, слияния и уничтожения популяций во многих аспектах схожи с явлениями, происходящими при взаимодействии больших, средних и малых социальных групп.
Возможно, эта игра связана и с другими научными явлениями, в том числе и с теми, о которых современной науке пока неизвестно. Также возможно, что не открытые на сегодня законы Природы и Общества станут более понятными благодаря «Жизни» и её модификациям.
Интересные факты
Правила игры таковы, что никакое взаимодействие не может передаваться быстрее хода шахматного короля. Его скорость — одна клетка в любом направлении — часто называют «скоростью света».
Фигура «планер» в 2003 году была предложена в качестве эмблемы хакеров.
Первое русскоязычное упоминание «Game of Life» относится к 1971 году и в переводе журнала «Наука и жизнь» известна как «Эволюция».
Если ввести в Google «conway's game of life», то на экране будет подобие этой игры[7][8].
Модификации Game of Life
Существуют модификации игры «Жизнь» / «Эволюция» по: размерности — на плоскости, в объёме; цветности — однотоновая, чёрно-белая (шахматная), полноцветная; направлению алгоритма — прямой, обратный; константам эволюции — классические (B3/S23), изменённые; размерам игрового поля — ограниченное, неограниченное, полуограниченное; активности поля — активное, пассивное; количеству игроков — zero-game, один, два; активности игры — пассивная, активная; геометрии поля — прямоугольная, шестиугольная.
Эффективным алгоритмом полноцветной игры является декомпозиция исходного изображения на однотоновые, с последующей, после применения к ним классических правил жизни, их суперпозицией; для объёмных вариантов — ортогональный алгоритм преобразований. Примеры практического применения этого — всевозможные заставки, абстрактные изображения, дизайн произведений искусства.
В шахматном, чёрно-белом варианте участвуют два игрока, цвет рождения определяется по преобладанию цвета в порождающей триаде, запись ходов осуществляется по правилам шахматных нотаций. Кроме оригинальных граничных образований здесь наблюдаются коллизии цвета, например, «глайдер» в нотации: белые a2b2c2, чёрные c3b4 — полностью обесцвечивается за цикл преобразований, а то же: белые a2b2, чёрные c2c3 b4 — демонстрируется хроматическая цикличность «глайдера» в рамках его геометрической цикличности.
В активной шахматной игре игрокам представляется возможность влиять на события «Жизни/Эволюции» единичным введением — выведением ограниченного количества фишек своего цвета с целью экспансии, стабилизации хода истории, противодействия в этом противнику. Теоретические основания здесь — методы принятия решения, аппарат теории игр.
Paul Rendell.Turing Machine Universality of the Game of Life.— Springer International Publishing, 2016.— (Emergence, Complexity and Computation; vol.18).— ISBN 978-3-319-19841-5, 978-3-319-19842-2.— DOI:10.1007/978-3-319-19842-2.
Уэзерелл Ч.Этюды для программистов.— М.: Мир, 1982.— С.19-22.
Гарднер М.Крестики-нолики.— М.: Мир, 1988.— С.287—343.— ISBN 5030012346.
Щеглов Г.Шахматная Эволюция.— Lambert Academic Publishing, 2012.— 88с.— ISBN 9783848424603.
Трофимов М. Жизнь на Макинтоше // Монитор, 1995. — № 2, с.72; № 4, с.72; № 5, с.66.
Журнал Наука и Жизнь. № 8, 1971, с. 130—133.
Журнал В мире научных открытий. № 5.4(11), 2010, с. 50-53, 139. ISSN 2072-0831 (print), ISSN 2307-9428 (online)
Приложение к журналу Юный техник. № 8 август 1989, с. 11-13
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии