WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Красная дуга окружности является геодезической в дисковой модели Пуанкаре. Она проектируется на коричневую геодезическую на зелёном гиперболоиде.

Гиперболоидная модель, известная также как модель Минковского или лоренцева модель (Герман Минковский, Хендрик Лоренц), является моделью n-мерной геометрии Лобачевского, в которой каждая точка представлена точкой на верхней поверхности двуполостного гиперболоида в (n+1)-мерном пространстве Минковского а m-плоскости представлены пересечением (m+1)-плоскостей в пространстве Минковского с S+. Функция гиперболического расстояния в этой модели удовлетворяет простому выражению. Гиперболоидная модель n-мерного гиперболического пространства тесно связана с моделью Бельтрами — Клейна и дисковой моделью Пуанкаре, так как они являются проективными моделями в смысле, что группа движений[en] является подгруппой проективной группы.

Квадратичная форма Минковского

Если являются векторами в (n + 1)-мерном координатном пространстве , квадратичная форма Минковского определяется как

Вектора , такие, что , образуют n-мерный гиперболоид S, состоящий из двух связных компонент, или листов — верхний, или будущее, лист , где и нижний, или прошлое, лист , где . Точки n-мерной гиперболоидной модели являются точками на листе будущего .

Билинейная форма Минковского B является поляризацией квадратичной формы Минковского Q,

Или в явном виде,

Гиперболическое расстояние между двумя точками u и v пространства задаётся формулой ,

где arch является обратной функцией гиперболического косинуса.

Прямые

Прямая в гиперболическом n-пространстве моделируется геодезической на гиперболоиде. Геодезическая на гиперболоиде является (непустым) пересечением с двумерным линейным подпространством (включая начало координат) n+1-мерного пространства Минковского. Если мы возьмём в качестве u и v базисные вектора линейного подпространства с

и используем w как параметр для точек на геодезической, то

будет точкой на геодезической[1].

Более обще, k-мерная «плоскость» в гиперболическом n-пространстве будет моделироваться (непустым) пересечением гиперболоида с k+1-мерным линейным подпространством (включая начало координат) пространства Минковского.

Движения

Неопределённая ортогональная группа[en] O(1,n), называемая также (n+1)-мерной группой Лоренца, является группой Ли вещественных (n+1)×(n+1) матриц, которая сохраняет билинейную форму Минковского. Другими словами, это группа линейных движений пространства Минковского. В частности, эта группа сохраняет гиперболоид S. Напомним, что неопределённые ортогональные группы имеют четыре связные компоненты, соответствующие обращению или сохранению ориентации на каждом подпространстве (здесь — 1-мерном и n-мерном), и образуют четверную группу Клейна. Подгруппа O(1,n), которая сохраняет знак первой координаты, является ортохронной группой Лоренца, обозначаемой O+(1,n), и имеет две компоненты, соответствующие сохранению или обращению ориентации подпространства. Её подгруппа SO+(1,n), состоящая из матриц с определителем единица, является связной группой Ли размерности n(n+1)/2, которая действует на S+ линейными автоморфизмами и сохраняет гиперболическое расстояние. Это действие транзитивно и является стабилизатором вектора (1,0,…,0), состоящим из матриц вида

где принадлежит компактной специальной ортогональной группе SO(n) (обобщающей группу вращений SO(3) для n = 3). Отсюда следует, что n-мерное гиперболическое пространство[en] может быть представлено как однородное пространство и риманово симметрическое пространство ранга 1,

Группа SO+(1,n) является полной группой сохраняющих ориентацию движений n-мерного гиперболического пространства.

История

  • Согласно Джереми Грею (1986)[5] Пуанкаре использовал гиперболоидную модель в его персональных заметках в 1880. Пуанкаре опубликовал свои результаты в 1881, в которых он обсуждает инвариантность квадратичной формы [6]. Грей показывает, где гиперболоидная модель явно упоминается в более поздних работах Пуанкаре[7]. Для подробностей см. История преобразований Лоренца, раздел «Пуанкаре»[en].
  • Также Хомершем Кокс в 1882[8][9] использовал координаты Вейерштрасса (без использования этого имени), удовлетворяющие соотношению , а также соотношению . Для подробностей см. История преобразований Лоренца, раздел «Кокс»[en].

Позднее (1885) Киллинг утверждал, что фраза координаты Вейерштрасса соотносится с элементами гиперболоидной модели следующим образом: если задано скалярное произведение на , координаты Вейерштрасса точки равны

что можно сравнить с выражением

для модели полусферы[11].

Как метрическое пространство гиперболоид рассматривал Александр Макфарлейн[en] в книге Papers in Space Analysis (1894). Он заметил, что точки на гиперболоиде можно записать как

где α является базисным вектором, ортогональным оси гиперболоида. Например, он получил гиперболический закон косинусов[en] путём использования алгебры физики[en][1].

Х. Дженсен сфокусирвался на гиперболоидной модели в статье 1909 года «Представление гиперболической геометрии на двухполостном гиперболоиде»[12]. В 1993 У.Ф. Рейнольдс изложил раннюю историю модели в статье, напечатанной в журнале American Mathematical Monthly[13].

Будучи общепризнанной моделью в двадцатом веке, её отождествил с Geschwindigkeitsvectoren (нем., векторами скорости) Герман Минковский в пространстве Минковского. Скотт Вальтер в статье 1999 «Неевклидов стиль специальной теории относительности»[14] упоминает осведомлённость Минковского, но ведёт происхождение модели к Гельмгольцу, а не к Вейерштрассу или Киллингу.

В ранние годы релятивистскую гиперболоидную модель использовал Владимир Варичак[en] для объяснения физики скорости. В его докладе в Немецком Математическом обществе в 1912 он ссылался на координаты Вейерштрасса[15].

См. также

Примечания

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии