WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Жёсткость Мостова утверждает, что геометрия гиперболического многообразия конечного объёма в размерностях, начиная с трёх, полностью определяется его фундаментальной группой.

История

Для замкнутых многообразий теорема была доказана Джорджем Мостовым в 1968 году. Обобщена на многообразия конечного объёма размерности Марденом и Прасадом (англ. Prasad). Громов дал другое доказательство — основанное на симплициальном объёме.

До этого Вейль доказал тесно связаные утверждения. В частности то, что кокомпактные действия дискретных групп изометрий гиперболического пространства размерности не менее 3 не допускают нетривиальных деформаций.

Формулировки

Геометрическая формулировка

Пусть M и N — полные гиперболические n-мерные многообразия конечного объёма с n≥3. Тогда любой изоморфизм fπ1(M) → π1(N) индуцируется изометрией M N.

Здесь π1(M) обозначает фундаментальную группу многообразия M.

Алгебраическая формулировка

Пусть Γ и Δ — дискретные подгруппы группы G изометрий n-мерного гиперболического пространства H с n≥3, чьи фактор-пространства H/Γ и H/Δ имеют конечные объёмы. Тогда изоморфность Γ и Δ как дискретных групп влечёт их сопряжённость в G.

Приложения

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии