Молекулярная структура гидрида алюминия α-(AlH3)nЯчейка кристаллической решётки гидрида алюминия γ-(AlH3)nМолекулярная структура димера гидрида алюминия Al2H6
В обычных условиях гидрид алюминия имеет полимерную молекулярную структуру (AlH3)n, при этом его кристаллическая форма существует в семи полиморфных модификациях: α-(AlH3)n, α1-(AlH3)n, β-(AlH3)n, δ-(AlH3)n, ε-(AlH3)n, γ-(AlH3)n, ζ-(AlH3)n[4].
Самой устойчивой является модификация α-(AlH3)n, имеющая гексагональную сингонию (пространственная группа R3c, а = 4,449 Å, b = 4,449 Å, c = 11,804 Å). Длина связи Al—H составляет 1,72 Å, длина связи Al—Al: 3,24 Å[5]. Структура α-(AlH3)n представляет собой совокупность октаэдров АlН6, объединенных шестью трехцентровыми двухэлектронными связями Аl—Н—Аl в кристаллический каркас[6].
Модификация γ-(AlH3)n существует в ромбической сингонии, пространственная группа Pnnm (а = 5,3806 Å, b = 7,3555 Å, c = 5,77509 Å). Ячейка кристаллической решётки гидрида состоит из двух октаэдров AlH6, длина связи Al—Al составляет 2,606 Å. Особенностью структуры является наличие разветвлённой двойной мостиковой связи Al—2H—Al (длина связи Al—H: 1,68—1,70 Å) в дополнение к обычной связи Al—H—Al (длина связи Al—H: 1,77—1,78 Å). Из-за наличия больших полостей в кристаллической структуре γ-(AlH3)n, данная модификация имеет плотность примерно на 11 % меньше, чем α-(AlH3)n[7].
При взаимодействии распылённых лазероматомовалюминия с водородом при сверхнизких температурах (3,5K) с последующим ультрафиолетовым излучением и нормализацией при 6,5K, в продуктах фотолиза можно обнаружить структуры димера Al2H6, аналогичные структуре диборана B2H6[8]. Димер (см. структуру на рисунке) очень неустойчив в конденсированном состоянии, поэтому его существование обнаружилось лишь спустя примерно пятьдесят лет после открытия гидрида алюминия[9].
В 2007 году группа учёных из США воздействовала на алюминий плазменным потоком атомов водорода и обнаружила, что в результате образуются различные анионные полиядерные гидриды алюминия, среди которых особый интерес вызвал анион Al4H6−, чей нейтральный гибрид Al4H6 по расчётам должен отличаться заметной стабильностью. Структурно соединение должно представлять искажённый тетраэдр с вершинами — атомами алюминия, в котором атомы водорода образуют четыре терминальные связи Al–H и две мостиковые связи Al–H–Al. Большой энергетический порог между высшими занятыми и низшими свободными молекулярными орбиталями в сочетании с исключительно высоким значением теплоты сгорания позволяют предположить, что этот гидрид алюминия может представлять собой перспективный материал для ракетного топлива[10].
Физические свойства
Гидрид алюминия представляет собой твёрдое белое[11] или бесцветное[12] вещество. Плотность 1,45[1] (по другим данным 1,47[13]) г/см³. Растворим в тетрагидрофуране (5 г в 100 г растворителя при 19,5°C)[2].
Большое содержание водорода в гидриде алюминия обуславливает ряд его свойств, связанных с проблемой высокотемпературной сверхпроводимости: в области давлений ~60ГПа и температуре ~1000K он обладает полупроводниковым механизмом проводимости, а в области высоких давлений и температур (до 90ГПа и 2000K) его проводимость сопоставима с металлической электропроводностью водорода[15].
Химические свойства
Соединение нестабильно: при нагревании выше 100°C разлагается[16]:
С диэтиловым эфиром образует высокореакционный, но относительно стабильный комплекс переменного состава, который часто используется для синтетических целей[12]:
Для стабилизации гидрида алюминия также можно использовать комплексы с другими аминами, например с N-метилпирролидином (NMP): AlH3•NMP и AlH3•(NMP)2[17].
Хлорид лития выпадает в осадок до момента полимеризации AlH3 и отделяется от эфирного раствора, из которого путём дальнейшей отгонки эфира получают комплекс гидрида алюминия с диэтиловым эфиром[19].
Для получения чистого гидрида (без примесей растворителя) эфирный комплекс подвергают нагреванию в вакууме с добавлением бензола[6] или в присутствии небольших количеств LiAlH4 или смеси LiAlH4+LiBH4[4]. При этом сперва получаются β-AlH3 и γ-AlH3 модификации, которые затем переходят в более стабильный α-AlH3[4].
Среди прочих методов отметим синтез с использованием гидрида магния[23]:
Долгое время считалось, что гидрид алюминия невозможно получить прямым взаимодействием элементов, поэтому для его синтеза использовали приведённые выше косвенные методы[24]. Однако, в 1992 году группа российских учёных осуществила прямой синтез гидрида из водорода и алюминия, используя высокое давление (выше 2 ГПа) и температуру (более 800K). Вследствие очень жёстких условий протекания реакции, в настоящий момент метод имеет лишь теоретическое значение[13].
Применение
Гидрид алюминия находит широкое применение в органическом синтезе в качестве сильнейшего восстанавливающего агента.
В связи с тем, что гидрид алюминия представляет собой соединение с высоким содержанием водорода (10,1 %), он используется в производстве ракетных топлив и некоторых взрывчатых веществ[25], а также для систем хранения и генерации в автономных энергетических водородных установках.
1 2 3 Лидин Р.А., Андреева Л.Л., Молочко В.А.Глава 3. Физические свойства//Константы неорганических веществ: справочник/Под редакцией проф. Р.А.Лидина.— 2-е изд., перераб. и доп..— М.: «Дрофа», 2006.— С.74.— ISBN 5-7107-8085-5.
1 2 3 4 5 Лидин Р.А., Андреева Л.Л., Молочко В.А.Часть IV. Термодинамика. Глава 1. Энтальпия образования, энтропия и энергия Гиббса образования веществ//Константы неорганических веществ: справочник/Под редакцией проф. Р.А.Лидина.— 2-е изд., перераб. и доп..— М.: «Дрофа», 2006.— С.442.— ISBN 5-7107-8085-5.
1 2 3 4 Brower F.M., Matzek N.E., Reigler P.F., Rinn H.W., Roberts C.B., Schmidt D.L., Snover J.
A., Terada K.Preparation and Properties of Aluminum Hydride(англ.)// Journal of the American Chemical Society.— 1976.— Vol. 98, no. 9.— P. 2450—2453.
↑ Mirsaidov U.Synthesis, Properties, and Assimilation Methods of Aluminium Hydride(англ.)// Edited by T. Nejat Veziroğlu, Svetlana Yu Zaginaichenko, Dmitry V. Schur, Bogdan Baranowski, Anatoliy P. Shpak Hydrogen Materials Science and Chemistry of Carbon Nanomaterials: NATO Science for Peace and Security Series / NATO Science for Peace and Security Series A:.— Springer, 2007.— P. 77—85.— ISBN 978-1-4020-5512-6.
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии