WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
График функции ошибок

Функция ошибок (также упоминается как интеграл вероятности) — неэлементарная функция, возникающая в теории вероятностей, статистике и теории дифференциальных уравнений в частных производных. Она определяется как

.

Дополнительная функция ошибок, обозначаемая (иногда применяется обозначение ) определяется через функцию ошибок:

.

Комплексная функция ошибок, обозначаемая , также определяется через функцию ошибок:

.

Свойства

  • Для любого комплексного выполняется
где черта обозначает комплексное сопряжение числа .
  • Функция ошибок не может быть представлена через элементарные функции, но, разлагая интегрируемое выражение в ряд Тейлора и интегрируя почленно, мы можем получить её представление в виде ряда:
Это равенство выполняется (и ряд сходится) как для любого вещественного , так и на всей комплексной плоскости, согласно признаку Д’Аламбера. Последовательность знаменателей образует последовательность A007680 в OEIS.
  • Для итеративного вычисления элементов ряда полезно представить его в альтернативном виде:
поскольку  — сомножитель, превращающий -й член ряда в -й, считая первым членом .
  • Функция ошибок на бесконечности равна единице; однако это справедливо только при приближении к бесконечности по вещественной оси, так как:
  • При рассмотрении функции ошибок в комплексной плоскости точка будет для неё существенно особой.
  • Производная функции ошибок выводится непосредственно из определения функции:


  • Обратная функция ошибок представляет собой ряд
где c0 = 1 и
Поэтому ряд можно представить в следующем виде (заметим, что дроби сокращены):
Последовательности числителей и знаменателей после сокращения — A092676 и A132467 в OEIS; последовательность числителей до сокращения — A002067 в OEIS.
Дополнительная функция ошибок

Применение

Если набор случайных величин подчиняется нормальному распределению со стандартным отклонением , то вероятность, что величина отклонится от среднего не более чем на , равна .

Функция ошибок и дополнительная функция ошибок встречаются в решении некоторых дифференциальных уравнений, например, уравнения теплопроводности с начальными условиями, описываемыми функцией Хевисайда («ступенькой»).

В системах цифровой оптической коммуникации, вероятность ошибки на бит также выражается формулой, использующей функцию ошибок.

Асимптотическое разложение

При больших полезно асимптотическое разложение для дополнительной функции ошибок:

Хотя для любого конечного этот ряд расходится, на практике первых нескольких членов достаточно для вычисления с хорошей точностью, в то время как ряд Тейлора сходится очень медленно.

Другое приближение даётся формулой

где

Родственные функции

С точностью до масштаба и сдвига, функция ошибок совпадает с нормальным интегральным распределением, обозначаемым

Обратная функция к , известная как нормальная квантильная функция, иногда обозначается и выражается через нормальную функцию ошибок как

Нормальное интегральное распределение чаще применяется в теории вероятностей и математической статистике, в то время как функция ошибок чаще применяется в других разделах математики.

Функция ошибок является частным случаем функции Миттаг-Леффлера, а также может быть представлена как вырожденная гипергеометрическая функция (функция Куммера):

Функция ошибок выражается также через интеграл Френеля. В терминах регуляризованной неполной гамма-функции P и неполной гамма-функции,

Обобщённые функции ошибок

График обобщённых функций ошибок :
серая линия:
красная линия:
зелёная линия:
синяя линия:
жёлтая линия: .

Некоторые авторы обсуждают более общие функции

Примечательными частными случаями являются:

  •  — прямая линия, проходящая через начало координат:
  •  — функция ошибок .

После деления на все с нечётными выглядят похоже (но не идентично). Все с чётными тоже выглядят похоже, но не идентично, после деления на . Все обобщённые функции ошибок с выглядят похоже на полуоси .

На полуоси все обобщённые функции могут быть выражены через гамма-функцию:

Следовательно, мы можем выразить функцию ошибок через гамма-функцию:

Итерированные интегралы дополнительной функции ошибок

Итерированные интегралы дополнительной функции ошибок определяются как

Их можно разложить в ряд:

откуда следуют свойства симметрии

и

Реализации

В стандарте языка Си (ISO/IEC 9899:1999, пункт 7.12.8) предусмотрены функция ошибок и дополнительная функция ошибок . Функции объявлены в заголовочных файлах math.h (для Си) или cmath (для C++). Там же объявлены пары функций erff(), erfcf() и erfl(), erfcl(). Первая пара получает и возвращает значения типа float, а вторая — значения типа long double. Соответствующие функции также содержатся в библиотеке Math проекта «Boost».

В языке Java стандартная библиотека математических функций java.lang.Math не содержит[1] функцию ошибок. Класс Erf можно найти в пакете org.apache.commons.math.special из не стандартной библиотеки, поставляемой[2] Apache Software Foundation.

Системы компьютерной алгебры Maple, Matlab, Mathematica и Maxima содержат обычную и дополнительную функции ошибок, а также обратные к ним функции.

В языке Python функция ошибок доступна[3] из стандартной библиотеки math, начиная с версии 2.7. Также функция ошибок, дополнительная функция ошибок и многие другие специальные функции определены в модуле Special проекта SciPy.

В языке Erlang функция ошибок и дополнительная функция ошибок доступны из стандартного модуля math[4].

См. также

Литература

  • Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972. (См. часть 7)
  • Nikolai G. Lehtinen «Error functions», April 2010

Примечания

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии