WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Сингулярное распределение (по отношению к мере ) — это распределение вероятностей, которое сосредоточено на множестве таком, что . Однако часто используют более узкое определение, гласящее, что сингулярным называют распределение в пространстве , сосредоточенное на множестве нулевой меры Лебега и приписывающее каждому одноточечному множеству нулевую вероятность[1]. Важно отметить, что согласно общему определению любое дискретное распределение является сингулярным по отношению к мере Лебега, но в частном определении дискретные распределения выведены из множества сингулярных.

Для одномерного пространства также можно утверждать, что распределение сингулярно, если множество точек роста у функции распределения имеет нулевую меру.

Свойства

Сингулярное распределение не может являться абсолютно непрерывным (по теореме Радона — Никодима).

Любое вероятностное распределение может быть представлено в виде следующей суммы:

,

где , , , распределение — сингулярно по отношению к мере , а распределение — абсолютно непрерывно по отношению к этой же мере[2].

Примеры

Простейшим примером сингулярного распределения является распределение, сосредоточенное на канторовом множестве (его функцией распределения является лестница Кантора).

Более часто встречающимся в практических задачах сингулярным распределением является распределение случайных направлений в двухмерном евклидовом пространстве[2]. Случайное направление соответствует единичному вектору, повёрнутому на случайный угол относительно вектора . Выбор случайного направления равнозначен выбору случайной точки на единичной окружности, которая, в свою очередь, имеет нулевую площадь, следовательно, это распределение — сингулярно.

Примечания

  1. Сингулярное распределение // Математическая энциклопедия / И. М. Виноградов (гл. ред.). М.: Советская энциклопедия, 1977—1985.
  2. 1 2 Феллер В. Введение в теорию вероятностей и её приложения. — 2-е изд. М.: Мир, 1964. — Т. 2. — С. 177—179.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии