Для значений отображение тент переводит отрезок в себя, являясь динамической системой c дискретным временем. В частности, орбитой точки из интервала является последовательность :
График общего случая отображения тентГрафик случая для 1, 2 и 3 итераций отображения тент
Орбиты отображения для Графики 1,2,3,4,5,6 итераций отображения тент для
Если , является притягивающей неподвижной точкой: система будет стремиться к нулю с устремлением времени в бесконечность при любом исходном значении из отрезка .
Если , все — неподвижные точки, а — предпериодические точки единичного периода (после одной итерации переходят в неподвижные).
Если , то отображение имеет две неподвижные точки: и . Причем обе из них будут неустойчивыми, то есть значения , лежащие в окрестностях неподвижных точек, будут отдаляться от них с последующими итерациями. Более того, для таких значений , в интервале содержатся и периодические, и непереиодические точки.
Если , то система отображает множество интервалов из отрезка в себя, и их объединение является множеством Жюлиа отображения тент, т.е. множеством точек, чьи орбиты неустойчивы.
величение показывает, что при μ ≈ 1, множество Жулиа состоит из нескольких интрвалов. На диаграммах видно 4 и 8 интервалов при достаточном увеличении.
Бифуркационная диаграмма отображения тент. Более высокая плотность соответствует более высокой вероятности, что переменная x примет данное значение для параметра
Бифуркационная диаграмма отображения тент. Более высокая плотность соответствует более высокой вероятности, что переменная x примет данное значение для параметра
При увеличении, в близи острия видно 4 интервала
При увеличении, в близи острия видно 4 интервала
При дальнейшем увеличении видно 8 интервалов
При дальнейшем увеличении видно 8 интервалов
Графики 1,2,3,4,5,6 итераций отображения тент для
Если , то интервалы из отрезка сходятся и множество Жюлиа — это весь интервал (см. бифуркационную диаграмму).
Графики 1,2,3,4,5,6 итераций отображения тент для
Если , то система переводит отрезок [0;1] в себя. В этом случае периодические точки плотны на отрезке, так что отображение демонстрирует хаотичность[2]. Непериодическое поведение характерно только для иррациональных чисел, что может быть показано с помощью механизма, которым отображение действует на представленное в двоичной записи число: оно перемещает двоичную запятую вправо на один знак, а затем, если то, что оказалось слева от запятой — это единица, отбрасывает её и обращает все единицы в нули и наоборот (кроме последней единицы для чисел с конечной двоичной записью). Для иррационального числа, двоичная запись которого непериодична, это бесконечный процесс. Кроме того, стоит обратить внимание, что для отображение тент топологически сопряженологистическому отображению для и полусопряжен отображению удвоения, что указывает на сходство динамических свойств этих отображений[3]. Действительно, пусть — орбита отображения тент при , а — орбита логистического отображения для , тогда они связаны соотношением: .
Если , множество Жюлиа отображения все еще содержит бесконечное количество и периодических, и непериодических точек, но почти всюду точки отрезка стремятся к бесконечности. Само множество становится канторовым. В частности, множество Жюлиа отображения тент для — стандартное канторово множество.
Асимметричное отображение тент
Также объектом изучения теории динамических систем является асимметричное отображение тент . Его можно считать расширением случая стандартного отображения тент:
Асимметричное отображение тент сохраняет вид кусочно-линейной функции и может быть использовано для
представления вещественных чисел из по аналогии с десятичной записью[4].
↑ Lynch, Stephen. "Nonlinear discrete dynamical systems." Dynamical Systems with Applications using Maple. Birkhäuser Boston, 2010. 263-295.
↑ Li, Tien-Yien, and James A. Yorke. "Period three implies chaos." American mathematical monthly (1975): 985-992.
↑ Smale, Stephen, Morris W. Hirsch, and Robert L. Devaney. "Discrete dynamical systems." Differential equations, dynamical systems, and an introduction to chaos. Vol. 60. Academic Press, 2003. 327-357.
↑ Lagarias, J. C., H. A. Porta, and K. B. Stolarsky. "Asymmetric tent map expansions. I. Eventually periodic points." Journal of the London Mathematical Society 2.3 (1993): 542-556.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии