WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Неассоциативное кольцо (не обязательно ассоциативное кольцо) — общеалгебраическая структура, обобщение понятия кольца, определяется сходным с кольцом образом, но при этом не требуется ассоциативность умножения. Иногда под «кольцом» понимается это его обобщение, но большинство источников по алгебре включают в определение термина «кольцо» условие ассоциативности умножения.

Определение

Неассоциативное кольцо — это множество R, на котором заданы две бинарные операции: + и × (называемые сложение и умножение), со следующими свойствами, выполняющимися для любых a, b, cR:

  1.  — коммутативность сложения;
  2.  — ассоциативность сложения;
  3.  — существование нейтрального элемента относительно сложения;
  4.  — существование противоположного элемента относительно сложения;
  5.  — дистрибутивность.

Иными словами, не обязательно ассоциативное кольцо — это универсальная алгебра (R, +, ×), такая что алгебра (R, +) — абелева группа, и операция × дистрибутивна слева и справа относительно +.

Кольцо, в котором операция умножения обладает свойством альтернативности, называется альтернативным.

Свойства

Даже если кольцо имеет единицу, не работает привычное понятие обратимого элемента: обратный может существовать с одной стороны и отсутствовать с другой, могут существовать с обеих сторон но быть разными, или существовать различные односторонние обратные к одному элементу. Также, наличие каких-либо обратных не гарантирует, что элемент не делит нуль, и не сохраняется при перемножении.

Аналогично обычным кольцам, неассоциативное кольцо можно рассмотреть как неассоциативную алгебру над кольцом целых чисел.

Примеры

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии