WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Минимальный многочлен в теории полей — конструкция, определяемая для алгебраического элемента: многочлен, которому кратны все многочлены, корнем которых является данный элемент.

Минимальные многочлены используются при изучении расширений полей. Если задано расширение и элемент , алгебраический над , то минимальное подполе , содержащее и , изоморфно факторкольцу , где  — кольцо многочленов с коэффициентами в , а  — главный идеал, порождённый минимальным многочленом . Также понятие минимального многочлена используется при определении сопряжённых элементов.

Определение

Пусть  — расширение поля,  — элемент, алгебраический над . Рассмотрим множество многочленов , таких что . Это множество образует идеал в кольце многочленов . Действительно, если , то , и для любого многочлена . Этот идеал ненулевой, так как по предположению элемент алгебраичен; поскольку  — область главных идеалов, этот идеал главный, то есть порождается некоторым многочленом . Такой многочлен определён с точностью до умножения на обратимый элемент поля; накладывая дополнительное требование, чтобы старший коэффициент был равен единице, то есть чтобы был приведённым многочленом, получается однозначное сопоставление произвольному алгебраическому элементу из данного расширения многочлена, который и называется минимальным многочленом . Из определения следует, что любой минимальный многочлен является неприводимым в .

Примеры

  • Пусть . Тогда минимальный многочлен  — это . Если же мы возьмем , то минимальный многочлен равен .
  • . Минимальный многочлен  — это .

Сопряжённые элементы

Сопряжённые элементы алгебраического элемента над полем  — это все (остальные) корни минимального многочлена .

Свойства

Пусть  — нормальное расширение с группой автоморфизмов , . Тогда для любого  — является сопряжённым к , так как любой автоморфизм переводит корни данного многочлена из снова в корни. Обратно, любой элемент , сопряженный к , имеет такой вид: это значит, что группа действует транзитивно на множестве сопряженных элементов. Следовательно, по неприводимости минимального многочлена, K-изоморфно . Следовательно, отношение сопряжённости симметрично.

Теорема Кронекера утверждает, что любое алгебраическое целое число, такое что его модуль и модуль всех сопряженных ему в поле комплексных чисел равен 1, является корнем из единицы.

Примечания

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии